Fourier Transform of Dini-Lipschitz Functions on the Field of p-Adic Numbers
- Autores: Platonov S.S.1
-
Afiliações:
- Institute of Mathematics
- Edição: Volume 11, Nº 4 (2019)
- Páginas: 307-318
- Seção: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/201299
- DOI: https://doi.org/10.1134/S2070046619040058
- ID: 201299
Citar
Resumo
Let ℚp be the field of p-adic numbers, a function f(x) belongs to the the Lebesgue class Lρ(ℚp), 1 ρ ≤ 2, and let \(\hat{f}(\xi)\) be the Fourier transform of f. In this paper we give an answer to the next problem: if the function f belongs to the Dini-Lipschitz class DLip(α, β, ρ; ℚp), α > 0, β ∈ ℝ, then for which values of r we can guarantee that \(\hat{f} \in {L^r}(\mathbb{Q}_p)\)? The result is an analogue of one classical theorem of E. Titchmarsh about the Fourier transform of functions from the Lipschitz classes on ℝ.
Palavras-chave
Sobre autores
Sergey Platonov
Institute of Mathematics
Autor responsável pela correspondência
Email: ssplatonov@yandex.ru
Rússia, Lenina av., 33, Petrozavodsk, 185910
Arquivos suplementares
