A heat equation on some adic completions of ℚ and ultrametric analysis


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

For each finite set S of prime numbers there exists a unique completion ℚS of ℚ, which is a second countable, locally compact and totally disconnected topological ring. This topological ring has a natural ultrametric that allows to define a pseudodifferential operator Dα and to study an abstract heat equation on the Hilbert space L2(ℚS). The fundamental solution of this equation is a normal transition function of a Markov process on ℚS. The techniques developed provides a general framework for these kind of problems on different ultrametric groups.

About the authors

V. A. Aguilar-Arteaga

Departamento de Matemáticas

Author for correspondence.
Email: aguilarav@math.cinvestav.mx
Mexico, México

M. Cruz-López

Departamento de Matemáticas

Email: aguilarav@math.cinvestav.mx
Mexico, Jalisco S/N Mineral de Valenciana, Guanajuato, Gto. C.P. 36240

S. Estala-Arias

Ciencias de la Computación

Email: aguilarav@math.cinvestav.mx
Mexico, Puebla

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.