A heat equation on some adic completions of ℚ and ultrametric analysis
- Authors: Aguilar-Arteaga V.A.1, Cruz-López M.1, Estala-Arias S.2
-
Affiliations:
- Departamento de Matemáticas
- Ciencias de la Computación
- Issue: Vol 9, No 3 (2017)
- Pages: 165-182
- Section: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200805
- DOI: https://doi.org/10.1134/S2070046617030013
- ID: 200805
Cite item
Abstract
For each finite set S of prime numbers there exists a unique completion ℚS of ℚ, which is a second countable, locally compact and totally disconnected topological ring. This topological ring has a natural ultrametric that allows to define a pseudodifferential operator Dα and to study an abstract heat equation on the Hilbert space L2(ℚS). The fundamental solution of this equation is a normal transition function of a Markov process on ℚS. The techniques developed provides a general framework for these kind of problems on different ultrametric groups.
About the authors
V. A. Aguilar-Arteaga
Departamento de Matemáticas
Author for correspondence.
Email: aguilarav@math.cinvestav.mx
Mexico, México
M. Cruz-López
Departamento de Matemáticas
Email: aguilarav@math.cinvestav.mx
Mexico, Jalisco S/N Mineral de Valenciana, Guanajuato, Gto. C.P. 36240
S. Estala-Arias
Ciencias de la Computación
Email: aguilarav@math.cinvestav.mx
Mexico, Puebla
Supplementary files
