A heat equation on some adic completions of ℚ and ultrametric analysis
- 作者: Aguilar-Arteaga V.A.1, Cruz-López M.1, Estala-Arias S.2
-
隶属关系:
- Departamento de Matemáticas
- Ciencias de la Computación
- 期: 卷 9, 编号 3 (2017)
- 页面: 165-182
- 栏目: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200805
- DOI: https://doi.org/10.1134/S2070046617030013
- ID: 200805
如何引用文章
详细
For each finite set S of prime numbers there exists a unique completion ℚS of ℚ, which is a second countable, locally compact and totally disconnected topological ring. This topological ring has a natural ultrametric that allows to define a pseudodifferential operator Dα and to study an abstract heat equation on the Hilbert space L2(ℚS). The fundamental solution of this equation is a normal transition function of a Markov process on ℚS. The techniques developed provides a general framework for these kind of problems on different ultrametric groups.
作者简介
V. Aguilar-Arteaga
Departamento de Matemáticas
编辑信件的主要联系方式.
Email: aguilarav@math.cinvestav.mx
墨西哥, México
M. Cruz-López
Departamento de Matemáticas
Email: aguilarav@math.cinvestav.mx
墨西哥, Jalisco S/N Mineral de Valenciana, Guanajuato, Gto. C.P. 36240
S. Estala-Arias
Ciencias de la Computación
Email: aguilarav@math.cinvestav.mx
墨西哥, Puebla
补充文件
