Axioms of Soft Logic


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

In this paper, we develop the foundation of a new mathematical language, which we term “Soft Logic”. This language enables us to present an extension of the number 0 from a singular point to a continuous line. We create a distinction between −0 and +0 and generate a new type of numbers, which we call ‘Bridge Numbers’ (BN):

\({\boldsymbol{a}}\overline {\bf{0}} \bot {\boldsymbol{b}}\overline {\bf{1}} ,\)

where a, b are real numbers, “a” is the value on the \(\overline {\bf{0}} \) axis, and “b” is the value on the \(\overline {\bf{1}} \) axis. We proceed by defining arithmetic and algebraic operations on the Bridge Numbers, investigate their properties, and conclude by defining goals for further research. In the Attachment, we continue comparing our results with existing mathematical work on Infinitesimals, Dual numbers, and Nonstandard analysis. The research is a part of “Digital living 2030” project with Stanford University.

作者简介

Moshe Klein

Tel Aviv University

编辑信件的主要联系方式.
Email: mosheklein@mail.tau.ac.il
以色列, Tel Aviv

Oded Maimon

Tel Aviv University

编辑信件的主要联系方式.
Email: maimon@tau.ac.il
以色列, Tel Aviv

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019