On a Congruence Involving Generalized Fibonomial Coefficients


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let (Fn)n≥0 be the Fibonacci sequence. For 1 ≤ km, the Fibonomial coefficient is defined as

\({\left[ {\begin{array}{*{20}{c}}
n \\
k
\end{array}} \right]_F} = \frac{{{F_{n - k + 1}} \cdots {F_{n - 1}}{F_n}}}{{{F_1} \cdots {F_k}}}\)
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±1 (mod 5), then p\({\left[ {\begin{array}{*{20}{c}}
{{p^{a + 1}}} \\
{{p^a}} \end{array}} \right]_F}\)
for all integers a ≥ 1. In 2010, in particular, Kilic generalized the Fibonomial coefficients for
\({\left[ {\begin{array}{*{20}{c}}
n \\
k \end{array}} \right]_{F,m}} = \frac{{{F_{\left( {n - k + 1} \right)m}} \cdots {F_{\left( {n - 1} \right)m}}{F_{nm}}}}{{{F_m} \cdots {F_{km}}}}\)
. In this note, we generalize Marques, Sellers and Trojovský result to prove, in particular, that if p ≡ ±1 (mod 5), then \({\left[ {\begin{array}{*{20}{c}}
{{p^{a + 1}}} \\
{{p^a}} \end{array}} \right]_{F,m}} \equiv 1\)
(mod p), for all a ≥ 0 and m ≥ 1.

About the authors

Pavel Trojovský

Department of Mathematics, Faculty of Science

Author for correspondence.
Email: pavel.trojovsky@uhk.cz
Czech Republic, Rokitanského 62, Hradec Králové, 50003

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2018 Pleiades Publishing, Ltd.