On a Congruence Involving Generalized Fibonomial Coefficients
- Authors: Trojovský P.1
-
Affiliations:
- Department of Mathematics, Faculty of Science
- Issue: Vol 10, No 1 (2018)
- Pages: 74-78
- Section: Short Communications
- URL: https://journals.rcsi.science/2070-0466/article/view/200941
- DOI: https://doi.org/10.1134/S2070046618010053
- ID: 200941
Cite item
Abstract
Let (Fn)n≥0 be the Fibonacci sequence. For 1 ≤ k ≤ m, the Fibonomial coefficient is defined as
\({\left[ {\begin{array}{*{20}{c}}
n \\
k
\end{array}} \right]_F} = \frac{{{F_{n - k + 1}} \cdots {F_{n - 1}}{F_n}}}{{{F_1} \cdots {F_k}}}\)![]()
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±1 (mod 5), then p∤\({\left[ {\begin{array}{*{20}{c}}n \\
k
\end{array}} \right]_F} = \frac{{{F_{n - k + 1}} \cdots {F_{n - 1}}{F_n}}}{{{F_1} \cdots {F_k}}}\)
{{p^{a + 1}}} \\
{{p^a}} \end{array}} \right]_F}\) for all integers a ≥ 1. In 2010, in particular, Kilic generalized the Fibonomial coefficients for
\({\left[ {\begin{array}{*{20}{c}}
n \\
k \end{array}} \right]_{F,m}} = \frac{{{F_{\left( {n - k + 1} \right)m}} \cdots {F_{\left( {n - 1} \right)m}}{F_{nm}}}}{{{F_m} \cdots {F_{km}}}}\)![]()
. In this note, we generalize Marques, Sellers and Trojovský result to prove, in particular, that if p ≡ ±1 (mod 5), then \({\left[ {\begin{array}{*{20}{c}}n \\
k \end{array}} \right]_{F,m}} = \frac{{{F_{\left( {n - k + 1} \right)m}} \cdots {F_{\left( {n - 1} \right)m}}{F_{nm}}}}{{{F_m} \cdots {F_{km}}}}\)
{{p^{a + 1}}} \\
{{p^a}} \end{array}} \right]_{F,m}} \equiv 1\) (mod p), for all a ≥ 0 and m ≥ 1.
About the authors
Pavel Trojovský
Department of Mathematics, Faculty of Science
Author for correspondence.
Email: pavel.trojovsky@uhk.cz
Czech Republic, Rokitanského 62, Hradec Králové, 50003
Supplementary files
