Trees and ultrametric Möbius structures
- Authors: Beyrer J.1, Schroeder V.1
-
Affiliations:
- Institut für Mathematik
- Issue: Vol 9, No 4 (2017)
- Pages: 247-256
- Section: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200862
- DOI: https://doi.org/10.1134/S207004661704001X
- ID: 200862
Cite item
Abstract
We define the concept of an ultrametric Möbius space (Z,M) and show that the boundary at infinity of a nonelementary geodesically complete tree is naturally an ultrametric Möbius space. In addition, we construct to a given ultrametric Möbius space (Z,M) a nonelementary geodesically complete tree, unique up to isometry, with (Z,M) being its boundary at infinity. This yields a one-to-one correspondence.
Keywords
About the authors
Jonas Beyrer
Institut für Mathematik
Author for correspondence.
Email: jonas.beyrer@math.uzh.ch
Switzerland, Zürich, Winterthurer Strasse 190, CH-8057
Victor Schroeder
Institut für Mathematik
Email: jonas.beyrer@math.uzh.ch
Switzerland, Zürich, Winterthurer Strasse 190, CH-8057
Supplementary files
