The p-adic order of some fibonomial coefficients whose entries are powers of p
- Authors: Trojovský P.1
-
Affiliations:
- Department of Mathematics
- Issue: Vol 9, No 3 (2017)
- Pages: 228-235
- Section: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200835
- DOI: https://doi.org/10.1134/S2070046617030050
- ID: 200835
Cite item
Abstract
Let (Fn)n≥0 be the Fibonacci sequence. For 1 ≤ k ≤ m, the Fibonomial coefficient is defined as
\({\left[ {\begin{array}{*{20}{c}} m \\ k \end{array}} \right]_F} = \frac{{{F_{m - k + 1}} \cdots {F_{m - 1}}{F_m}}}{{{F_1} \cdots {F_k}}}\)![]()
. In 2013, Marques, Sellers and Trojovský proved that if p is a prime number such that p ≡ ±2 (mod 5), then \(p{\left| {\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]} \right._F}\) for all integers a ≥ 1. In 2015, Marques and Trojovský worked on the p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all a ≥ 1 when p ≠ 5. In this paper, we shall provide the exact p-adic order of \({\left[ {\begin{array}{*{20}{c}} {{p^{a + 1}}} \\ {{p^a}} \end{array}} \right]_F}\) for all integers a, b ≥ 1 and for all prime number p.About the authors
Pavel Trojovský
Department of Mathematics
Author for correspondence.
Email: pavel.trojovsky@uhk.cz
Czech Republic, Rokitanského 62, Hradec Králové, 500 03
Supplementary files
