Positive operators on a free Banach space over the complex Levi-Civita field
- Authors: Aguayo J.1, Nova M.2, Shamseddine K.3
-
Affiliations:
- Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas
- Departamento de Matemática y Física Aplicadas, Facultad de Ingeniería
- Department of Physics and Astronomy
- Issue: Vol 9, No 2 (2017)
- Pages: 122-137
- Section: Research Articles
- URL: https://journals.rcsi.science/2070-0466/article/view/200767
- DOI: https://doi.org/10.1134/S2070046617020029
- ID: 200767
Cite item
Abstract
Let C be the complex Levi-Civita field and let c0(C) or, simply, c0 denote the space of all null sequences of elements of C. A non-Archimedean norm is defined naturally on c0 with respect to which c0 is a Banach space. In this paper, we study the properties of positive operators on c0 which are similar to those of positive operators in classical functional analysis; however the proofs of many of the results are nonclassical. Then we use our study of positive operators to introduce a partial order on the set of compact and self-adjoint operators on c0 and study the properties of that partial order.
About the authors
José Aguayo
Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas
Author for correspondence.
Email: jaguayo@udec.cl
Chile, Casilla 160-C, Concepción
Miguel Nova
Departamento de Matemática y Física Aplicadas, Facultad de Ingeniería
Email: jaguayo@udec.cl
Chile, Casilla 297, Concepción
Khodr Shamseddine
Department of Physics and Astronomy
Email: jaguayo@udec.cl
Canada, Winnipeg, Manitoba, R3T 2N2
Supplementary files
