Positive operators on a free Banach space over the complex Levi-Civita field


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let C be the complex Levi-Civita field and let c0(C) or, simply, c0 denote the space of all null sequences of elements of C. A non-Archimedean norm is defined naturally on c0 with respect to which c0 is a Banach space. In this paper, we study the properties of positive operators on c0 which are similar to those of positive operators in classical functional analysis; however the proofs of many of the results are nonclassical. Then we use our study of positive operators to introduce a partial order on the set of compact and self-adjoint operators on c0 and study the properties of that partial order.

About the authors

José Aguayo

Departamento de Matemática, Facultad de Ciencias Físicas y Matemáticas

Author for correspondence.
Email: jaguayo@udec.cl
Chile, Casilla 160-C, Concepción

Miguel Nova

Departamento de Matemática y Física Aplicadas, Facultad de Ingeniería

Email: jaguayo@udec.cl
Chile, Casilla 297, Concepción

Khodr Shamseddine

Department of Physics and Astronomy

Email: jaguayo@udec.cl
Canada, Winnipeg, Manitoba, R3T 2N2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.