Neural network model for user request analysis during software operations and maintenance phase

Cover Page

Cite item

Abstract

This article offers a transition-based neural network model for extracting informative expressions from user request texts. The configuration and transition system that turns the process of informative expression extraction into the execution of a sequence of transitions is described. Prediction of transition sequence is done using a neural network that uses features derived from the configuration. To train and evaluate a proposed model, a corpus of annotated Android mobile application reviews from the Google Play store was created. The training procedure of the model for informative expressions extraction and selected model’s hyperparameters are described. An experiment was conducted comparing the proposed model and an alternative model based on a hybrid of convolutional and recurrent neural networks. To compare quality of these two models, the F1 score that aggregates recall and precision of extracted informative expressions was used. The experiment shows that the proposed model extracts expressions of interest better than the alternative: the F1 score for spans extraction increased by 2.9% and the F1 for link extraction increased by 36.2%. A qualitive analysis of extracted expressions indicates that the proposed model is applicable for the task of user request analysis during operation and the maintenance phase of software products.

About the authors

Egor I. Gribkov

TomskSoft LLC; Tomsk State University of Control Systems and Radioelectronics

Author for correspondence.
Email: drnemor@gmail.com
8, Nahimova Street, Tomsk 634034; 40, Prospect Lenina, Tomsk 634050

Yuri P. Yekhlakov

Tomsk State University of Control Systems and Radioelectronics

Email: upe@tusur.ru
ORCID iD: 0000-0003-1662-4005
40, Prospect Lenina, Tomsk 634050

References

  1. Standartinform (2011) GOST R ISO/IEC 12207-2010. Information technology. Systems and software engineering. Software life cycle processes. Moscow: Standartinform (in Russian).
  2. Schach S.R. (2011) Object-oriented and classical software engineering. N.Y.: McGraw-Hill Education.
  3. Antoniol G., Ayari K., Di Penta M., Khomh F., Gueheneuc Y.-G. (2008) Is it a bug or an enhancement? A text-based approach to classify change requests. Proceedings of the 2008 Conference of the Center for Advanced Studies on Collaborative Research: Meeting of Minds, Ontario, Canada, 27–30 October, 2008, pp. 304–318. doi: 10.1145/1463788.1463819.
  4. Pagano D., Maalej W. (2013) User feedback in the appstore: An empirical study. Proceedings of the 21st IEEE International Requirements Engineering Conference. Rio de Janeiro, Brasil, 15–19 July 2013, pp. 125–134. doi: 10.1109/RE.2013.6636712.
  5. Iacob C., Harrison R. (2013) Retrieving and analyzing mobile apps feature requests from online reviews. Proceedings of the 10th Working Conference on Mining Software Repositories (MSR 2013), San Francisco, USA, 18–19 May 2013, pp. 41–44. doi: 10.1109/MSR.2013.6624001.
  6. Sänger M., Leser U., Kemmerer S., Adolphs P., Klinger R. (2016) SCARE – The sentiment corpus of app reviews with fine-grained annotations in German. Proceedings of the 10th International Conference on Language Resources and Evaluation. Portorož, Slovenia, 23–28 May 2016, pp. 1114–1121.
  7. Yekhlakov Yu.P., Gribkov E.I. (2018) User opinion extraction model concerning consumer properties of products based on a recurrent neural network. Business Informatics, vol. 46, no 4, pp. 7–16. doi: 10.17323/1998-0663.2018.4.7.16.
  8. Peregudov F.I., Tarasenko F.P. (1997) Basics of system analysis: guide. Tomsk: NTL (in Russian).
  9. Dyer C., Kuncoro A., Ballesteros M., Smith N.A. (2016) Recurrent neural network grammars. Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. San Diego, USA, 12–17 June 2016, pp. 199–209. doi: 10.18653/v1/N16-1024.
  10. Kiperwasser E., Goldberg Y. (2016) Simple and accurate dependency parsing using bidirectional LSTM feature representations. Transactions of the Association for Computational Linguistics, vol. 4, pp. 313–327. doi: 10.1162/tacl_a_00101.
  11. Lample G., Ballesteros M., Subramanian S., Kawakami K., Dyer C. (2016) Neural architectures for named entity recognition. Proceedings of the 15th Annual Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, San Diego, USA, 12–17 June 2016, pp. 260–270. doi: 10.18653/v1/N16-1030.
  12. Kim Y. (2014) Convolutional neural networks for sentence classification. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014, pp. 1746–1751. doi: 10.3115/v1/D14-1181.
  13. Gehring J., Auli M., Grangier D., Yarats D., Dauphin Y.N. (2017) Convolutional sequence to sequence learning. Proceedings of the 34th International Conference on Machine Learning (ICML), Sydney, Australia, 6–11 August 2017, vol. 70, pp. 1243–1252.
  14. Kalchbrenner N., Grefenstette E., Blunsom P. (2014) A convolutional neural network for modelling sentences. Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, Baltimore, USA, 22–27 June 2014, vol. 1, pp. 655–665. doi: 10.3115/v1/P14-1062.
  15. Huang Z., Xu W., Yu K. (2015) Bidirectional LSTM-CRF models for sequence tagging. arXiv.org. Available at: https://arxiv.org/abs/1508.01991
  16. (accessed 20 January 2020).
  17. Irsoy O., Cardie C. (2014) Opinion mining with deep recurrent neural networks. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014, pp. 720–728. doi: 10.3115/v1/D14-1080.
  18. Wang W., Jialin Pan S., Dahlmeier D., Xiao X. (2016) Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, USA, 1–5 November 2016, pp. 616–626. doi: 10.18653/v1/D16-1059.
  19. Goodfellow I., Warde-Farley D., Mirza M., Courville A., Bengio Y. (2013) Maxout networks. Proceedings of the 30th International Conference on Machine Learning, Atlanta, USA, 16–21 June 2013, pp. 1319–1327.
  20. He K., Zhang X., Ren S., Sun J. (2016) Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA, 26 June – 1 July 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.
  21. Graves A., Jaitly N., Mohamed A. (2013) Hybrid speech recognition with deep bidirectional LSTM. Proceedings of the 2013 IEEE Workshop on Automatic Speech Recognition and Understanding, Olomouc, Czech Republic, 8–12 December, 2013, pp. 273–278. doi: 10.1109/ASRU.2013.6707742.
  22. Hochreiter S., Schmidhuber J. (1997) Long short-term memory. Neural Computation, vol. 9, no 8, pp. 1735–1780. doi: 10.1162/neco.1997.9.8.1735.
  23. Chiu J.P.C., Nichols E. (2016) Named entity recognition with bidirectional LSTM-CNNs. Transactions of the Association for Computational Linguistics, no 4, pp. 357–370. doi: 10.1162/tacl_a_00104.
  24. Ma X., Hovy E. (2016) End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016, pp. 1064–1074. doi: 10.18653/v1/P16-1101.
  25. Wang Y., Huang M., Zhu X., Zhao L. (2016) Attention-based LSTM for aspect-level sentiment classification. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (EMNLP), Austin, USA, 1–5 November 2016, pp. 606–615. doi: 10.18653/v1/D16-1058.
  26. Caruana R. (1993) Multitask learning: A knowledge-based source of inductive bias. Proceedings of the 10th International Conference on International Conference on Machine Learning, Amherst, USA, 27–29 June 1993, pp. 41–48. doi: 10.1016/b978-1-55860-307-3.50012-5.
  27. Hashimoto K., Xiong C., Tsuruoka Y., Socher R. (2017) A joint many-task model: Growing a neural network for multiple NLP tasks. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (EMNLP), Copenhagen, Denmark, 7–11 September 2017, pp. 1923–1933. doi: 10.18653/v1/D17-1206.
  28. Grave E., Bojanowski P., Gupta P., Joulin A., Mikolov T. (2018) Learning word vectors for 157 languages. Proceedings of the 11th International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018, pp. 3483–3487.
  29. Jebbara S., Cimiano P. (2016) Aspect-based relational sentiment analysis using a stacked neural network architecture. Proceedings of the 22nd European Conference on Artificial Intelligence, The Hague, The Netherlands, 29 August – 2 September, 2016, pp. 1123–1131. doi: 10.3233/978-1-61499-672-9-1123.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».