Modelling of business processes of engineering companies at the stages of the life cycle of an investment and construction project

Cover Page

Cite item

Full Text

Abstract

Introduction. The engineering company ensures the interaction of all participants of the investment and construction project throughout its life cycle and implements a variety of business processes. Due to the fact that an engineering company coordinates the work of design and contracting organizations, suppliers of material and technical resources, the effectiveness of its organizational structure largely determines the efficiency of all participants in an investment and construction project.Materials and methods. The paper defines business processes and organizational structure and shows that for modelling business processes under various organizational structures, the most rational solution is modelling based on queuing networks. As a result, a simulation model of a queuing network was developed for an abstract business process and a simplified organizational structure. The GPSS simulation language was used for software implementation.Results. As a result of the modelling, it is shown that by varying the time indicators of the implementation of business processes and the times of performing various business functions, as well as the quantitative composition of performers in the divisions of an engineering company, it is possible to obtain stable estimates of the effectiveness of its production activities. The main estimates include the average implementation time of the main business processes and the average queue of queries for the implementation of the relevant business processes. Based on the obtained values of these indicators, the management will be able to make more reasonable decisions about the staffing of the engineering company and the transformation of its organizational structure.Conclusions. Modelling is the main mechanism for solving forecasting and optimization problems. Based on the simulation results, it is possible to make an informed decision about the number of employees needed to support a certain group of business processes.

About the authors

V. I. Paskanny

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: paskanny@mail.ru
ORCID iD: 0009-0007-7358-1757

A. A. Lapidus

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: lapidus58@mail.ru
ORCID iD: 0000-0001-7846-5770
SPIN-code: 8192-2653

References

  1. Dijkman R.M., Adan I., Peters S. Advanced queueing models for quantitative business process analysis // 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 2018. Рр. 260–267. doi: 10.1109/seaa.2018.00050
  2. Dumas M., La Rosa M., Mendling J., Reijers H.A. Fundamentals of business process management. Second ed. Springer, 2018. doi: 10.1007/978-3-662-56509-4
  3. Grefen P., Brouns N., Ludwig H., Serral E. Co-location specification for IoT-aware collaborative business processes // Lecture Notes in Business Information Processing. 2019. Рр. 120–132. doi: 10.1007/978-3-030-21297-1_11
  4. Абрамс Р. Бизнес-план на 100 %: Стратегия и тактика эффективного бизнеса. М. : Альпина Паблишер, 2019. 496 с.
  5. Остервальдер А., Ив Пинье. Построение бизнес-моделей. Настольная книга стратега и новатора / пер. с англ. М. Кульневой. М. : Альпина Паблишер, 2019. 288 с.
  6. Баринов В.А. Организационное проектирование. М. : ИНФРА-М, 2019. 384 с.
  7. Дафт Р., Мерфи Дж., Уилмотт Х. Организационная теория и дизайн. СПб. : Питер, 2013. 640 с.
  8. Силка Д.Н., Ермолаев Е.Е., Дуров Р.А., Копельчук С.Ю. Инжиниринг инвестиционно-строительных проектов промышленного назначения. М. : Стройинформиздат, 2014. 256 c. EDN UBEOWN.
  9. Michelfelder D.P., Doorn N. The routledge handbook of the philosophy of engineering. Routledge, 2020. doi: 10.4324/9781315276502
  10. Шинкарева Г.Н. Модель инжиниринговой схемы организации строительства в перспективе жизненного цикла объектов // Вестник МГСУ. 2018. Т. 13. № 9 (120). С. 1090–1105. doi: 10.22227/1997-0935.2018.9.1090-1105. EDN VKFFPI.
  11. Cagno E., Neri A., Negri M., Bassani C.A., Lampertico T. The role of digital technologies in operationali-zing the circular economy transition : a systematic litera-ture review // Applied Sciences. 2021. Vol. 11. Issue 8. P. 3328. doi: 10.3390/app11083328
  12. Орлов А.К., Белякова А.П. Основы бизнес-инжиниринга в инвестиционно-строительной сфере. М. : Изд-во МГСУ, 2016. 70 с. EDN YSFWWX.
  13. Гассман О., Франкенбергер К., Шик М. Бизнес-модели: 55 лучших шаблонов. М. : Альпина Паблишер, 2019. 432 с.
  14. Munsamy M., Telukdarie A., Fresner J. Business process centric energy modeling // Business Process Management Journal. 2019. Vol. 25. Issue 7. Рр. 1867–1890. doi: 10.1108/BPMJ-08-2018-0217
  15. Лапидус А.А., Муря В.А. Комплексный показатель качества организационно-технологических решений при возведении конструктивных элементов железобетонных зданий // Строительное производство. 2020. № 2. С. 3–9. doi: 10.54950/26585340_2020_2_3. EDN QMABHQ.
  16. Лапидус А.А. Инструмент оперативного управления производством — интегральный потенциал эффективности организационно-технологических и управленческих решений строительного объекта // Вестник МГСУ. 2015. № 1. С. 97–102.
  17. Awan U., Sroufe R., Shahbaz M. Industry 4.0 and the circular economy : a literature review and recommendations for future research // Business Strategy and the Environment. 2021. Vol. 30. Issue 4. Рр. 2038–2060. doi: 10.1002/bse.2731
  18. Martin N., Depaire B., Caris A. The use of process mining in business process simulation model construction // Business & Information Systems Engineering. 2016. Vol. 58. Issue 1. Рр. 73–87. doi: 10.1007/s12599-015-0410-4
  19. Rosado-Serrano A., Paul J., Dikova D. International franchising : a literature review and research agenda // Journal of Business Research. 2018. Vol. 85. Рр. 238–257. doi: 10.1016/j.jbusres.2017.12.049
  20. Peters S., Dijkman R., Grefen P. Quantitative effects of advanced resource constructs in business process simulation // 2018 IEEE 22nd International Enterprise Distributed Object Computing Conference (EDOC). 2018. Рр. 115–122. doi: 10.1109/edoc.2018.00024
  21. Grefen P., Brouns N., Ludwig H., Serral E. Co-location specification for IoT-aware collaborative business processes // Lecture Notes in Business Information Processing. 2019. Рр. 120–132. doi: 10.1007/978-3-030-21297-1_11

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».