Complex modification of non-autoclaved foam concrete

Cover Page

Cite item

Full Text

Abstract

Introduction. Cellular concrete is one of the most common building materials. Increase of its efficiency can be ensured by carrying out a complex modification. The paper proposes a formulation and technological solution for the production of non-autoclaved foam concrete, which consists in the use of a complex of modifying additives, including mineral dispersed and micro-reinforcing components. Their introduction contributes to stabilization of the foam concrete mixture, regulation of the processes of structure formation and control the performance of the finished material.Materials and methods. Portland cement of CEM I 42.5N grade, protein foaming agent “Etalon” were used. Modification of foam concrete was carried out by: quartz suspension obtained by wet milling of quartz sand, synthesized anhydrite, hardening activator Na2SO4, basalt and glass fibres. The main physical and mechanical characteristics of foam concrete were determined according to the current regulatory and technical documents. The microstructure was studied using scanning electron microscopy.Results. The influence of formulation factors on the operational quality indicators of non-autoclaved foam concrete for thermal insulation purposes was established, multicriteria optimization was carried out, rational compositions were determined. Materials with a density grade of D500 and a strength class of B1.5–B2 were obtained.Conclusions. The replacement of a part of the Portland cement binder with a dispersed modifier in combination with micro-reinforcing fibres makes it possible to obtain materials with improved properties at reduced production costs, namely, by optimizing the cellular structure, strength indicators increase while maintaining density and thermal conductivity values. This formulation solution leads to the compaction and strengthening of the interpore partitions, as a result, the “monolithization” of the matrix and the frame structure of the composite created by micro-reinforcing components. The material is characterized by polydisperse porosity with a wide range of pore sizes with a shape transitioning from regular rounded to polyhedral. As a result, the physico-mechanical and thermal insulation properties of non-autoclaved foam concrete are increased.

About the authors

D. D. Netsvet

Stary Oskol Technological Institute named after A.A. Ugarov (branch) of the National University of Science and Technology “MISIS” (STI NUST MISIS)

Email: netsvet_dd@mail.ru
ORCID iD: 0000-0002-7292-1154
SPIN-code: 6452-8550

M. N. Sivalneva

Belgorod State Technological University named after V.G. Shukhov (BSTU named after V.G. Shukhov)

Email: 549041@mail.ru
ORCID iD: 0000-0002-4957-9207

V.  V. Nelyubova

Belgorod State Technological University named after V.G. Shukhov (BSTU named after V.G. Shukhov)

Email: nelubova@list.ru
ORCID iD: 0000-0002-5736-5962

V. V. Strokova

Belgorod State Technological University named after V.G. Shukhov (BSTU named after V.G. Shukhov)

Email: vvstrokova@gmail.com
ORCID iD: 0000-0001-6895-4511

References

  1. Elrahman M.A., El Madawy M.E., Chung S.-Y., Sikora P., Stephan D. Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates // Applied Sciences. 2019. Vol. 9. Issue 7. P. 1447. doi: 10.3390/app9071447
  2. Zeng X., Lan X., Zhu H., Liu H., Umar H.A., Xie Y. et al. A review on bubble stability in fresh concrete: Mechanisms and main factors // Materials. 2020. Vol. 13. Issue 8. P. 1820. doi: 10.3390/MA13081820
  3. Zhou G., Su R.K.L. A review on durability of foam concrete // Buildings. 2023. Vol. 13. Issue 7. P. 1880. doi: 10.3390/buildings13071880
  4. Amran Y.H.M., Farzadnia N., Ali A.A.A. Properties and applications of foamed concrete : а review // Construction and Building Materials. 2015. Vol. 101. Pp. 990–1005. doi: 10.1016/j.conbuildmat.2015.10.112
  5. Моргун Л.В., Немилостивый А.Г., Гебру Б.К., Моргун В.Н. Эволюция применения в строительстве легких бетонов // Химия, физика и механика материалов. 2022. № 4 (35). С. 21–36. EDN KTFRDJ.
  6. Alfimova N.I., Pirieva S.Yu., Gudov D.V., Shu-rakov I.M., Korbut Е.Е. Optimization of receptural-technological parameters of manufacture of cellular concrete mixture // Construction Materials and Products. 2020. Pp. 30–36. doi: 10.34031/2618-7183-2018-1-2-30-36
  7. Drozdov A., Osipenkova I., Stupakova O. Dependence of foam concrete properties on technological factors // E3S Web of Conferences. 2020. Vol. 164. P. 14010. doi: 10.1051/e3sconf/202016414010
  8. Воронов В.В., Глаголев Е.С. Особенности гидратации и твердения полиминеральных композиционных вяжущих для пенобетонов // Вестник Сибирского государственного автомобильно-дорожного университета. 2020. Т. 17. № 1 (71). С. 122–135. doi: 10.26518/2071-7296-2020-17-1-122-135. EDN ZLGTGN.
  9. Тотурбиев Б.Д., Мамаев С.А., Тотурбиева У.Д. Теплоизоляционный пенобетон безавтоклавного твердения из местного нерудного минерального сырья // Геология и геофизика Юга России. 2023. Т. 13. № 3. С. 167–177. doi: 10.46698/VNC.2023.89.94.013. EDN SSPLSC.
  10. Череватова А.В., Жерновская И.В., Алехин Д.А., Кожухова М.И., Кожухова Н.И., Яковлев Е.А. Теоретические аспекты создания композиционного наноструктурированного гипсового вяжущего повышенной жаростойкости // Строительные материалы и изделия. 2019. Т. 2. № 4. С. 5–13. EDN OJFHQO.
  11. Кожухова Н.И. Опыт производства ячеистых бетонов на основе геополимерных вяжущих // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2023. № 4. С. 8–23. doi: 10.34031/2071-7318-2023-8-4-8-23. EDN QDVWLI.
  12. Хеирбеков Р.А., Самченко С.В. Некоторые физико-химические аспекты формирования структуры композиционного шлакосиликатного поризованного арболитового материала // Техника и технология силикатов. 2022. Т. 29. № 4. С. 379–390. EDN JKBDQD.
  13. Величко Е.Г., Дворников Р.М. Высокоэффективный поризованный арболит на основе шлако-силикатных вяжущих веществ // Техника и технология силикатов. 2021. Т. 28. № 4. С. 179–189. EDN RZZIVJ.
  14. Лукаш Е.В., Кузьменков М.И. Неавтоклавный пенобетон на основе магнезиального цемента // Строительные материалы. 2012. № 11. С. 33–35. EDN PJNDYF.
  15. Strokova V., Sivalneva M., Kobzev V. The effect of polyvinyl alcohol on the system of cement-free binding alumino-silicate composition // Solid State Phenomena. 2020. Vol. 299. Pp. 169–174. doi: 10.4028/ href='www.scientific.net/SSP.299.169' target='_blank'>www.scientific.net/SSP.299.169
  16. Gencel O., Bilir T., Bademler Z., Ozbakkaloglu T. A Detailed Review on Foam Concrete Composites: Ingredients, Properties, and Microstructure // Applied Sciences. 2022. Vol. 12. Issue 11. P. 5752. doi: 10.3390/app12115752
  17. Dvornikov R.M., Velichko E.G. Wood concrete modified with ground granulated blast furnace slag // Const-ruction of Unique Buildings and Structures. 2020. Nо. 6 (91). P. 9107. doi: 10.18720/CUBS.91.7. EDN JUIUZM.
  18. Priyatham B.P.R.V.S., Lakshmayya M.T.S., Chaitanya D.V.S.R.K. Review on performance and sustainability of foam concrete // Materials Today : Proceedings. 2023. doi: 10.1016/j.matpr.2023.04.080
  19. Hou L., Li J., Lu Z., Niu Y. Influence of foaming agent on cement and foam concrete // Construction and Building Materials. 2021. Vol. 280. P. 122399. doi: 10.1016/j.conbuildmat.2021.122399
  20. Falliano D., Domenico D., Ricciardi G., Gugliandolo E. Experimental investigation on the compressive strength of foamed concrete: Effect of curing conditions, cement type, foaming agent and dry density // Construction and Building Materials. 2018. Vol. 165. Pp. 735–749. doi: 10.1016/j.conbuildmat.2017.12.241
  21. Дворников Р.М., Самченко С.В. Формирование ячеистой структуры поризованного арболита // Техника и технология силикатов. 2022. Т. 29. № 1. С. 82–91. EDN KWNIQT.
  22. Нецвет Д.Д., Нелюбова В.В., Строкова В.В. Композиционное вяжущее с минеральными добавками для неавтоклавных пенобетонов // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2019. № 4. С. 122–131. doi: 10.34031/article_5cb1e65d077f65.54773394. EDN ZDDGHJ.
  23. Morgun V.N., Morgun L.V., Nagorskiy V.V. Diversive particles filler forms influence on mechanical properties foam concrete mixutes // IOP Conference Series : Materials Science and Engineering. 2019. Vol. 698. Issue 2. P. 022088. doi: 10.1088/1757-899X/698/2/022088
  24. Batool F., Rafi M.M., Bindiganavile V. Microstructure and thermal conductivity of cement-based foam : а review // Journal of Building Engineering. 2018. Vol. 20. Pp. 696–704. doi: 10.1016/j.jobe.2018.09.008

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).