Strength and deformability of folded elements made of textile-reinforced concrete
- Authors: Dontsova A.E.1, Stolyarov O.N.1
-
Affiliations:
- Peter the Great St.Petersburg Polytechnic University (SPbPU)
- Issue: Vol 20, No 2 (2025)
- Pages: 215-230
- Section: Construction system design and layout planning. Construction mechanics. Bases and foundations, underground structures
- URL: https://journals.rcsi.science/1997-0935/article/view/358806
- ID: 358806
Cite item
Full Text
Abstract
Introduction. The behaviour of folded elements made of textile-reinforced concrete under loading is investigated. Textile-reinforced concrete is a relatively new building material that is attracting increasing interest from researchers. Because the elements of textile-reinforced concrete are thin in cross section, they cannot cover large-span buildings. However, textile-reinforced concrete is well suited for the production of folded shells, as in the case of ferrocement. The aim of this study is to investigate the strength of textile-reinforced concrete folds under loading.Materials and methods. Textile-reinforced concrete folded specimens were manufactured. Warp-knitted meshes made of alkali-resistant glass fibres (AR) and carbon fibres (C) were used to reinforce the elements. The specimens were tested. Based on the test results, a comparison of the fold properties was performed depending on their shape (triangular or trapezoidal) and type of reinforcement.Results. The average failure load for the triangular folds was 5.9 kN for nonreinforced specimens, 4.8 kN for specimens reinforced with AR rovings, and 3.6 kN for specimens reinforced with C rovings. For the trapezoidal folds, the average failure load was 8.0 kN for nonreinforced specimens, 8.7 kN for AR reinforcement, and 10.7 kN for C reinforcement. The average compressive strength of fine-grain concrete was 25.08 MPa. The flexural strength of the fold elements was 7.29 MPa for nonreinforced specimens, 9.33 MPa for AR-reinforced specimens, and 15.4 MPa for C-reinforced specimens.Conclusions. The currently existing regulatory framework is insufficient for wide application of textile-reinforced concrete products in construction. To date, there are scattered experimental and theoretical studies on the mechanical properties of the material and the behaviour of structures made of textile-reinforced concrete under loading. Experimental data on the behaviour of folded elements made of textile-reinforced concrete under loading are presented.
About the authors
A. E. Dontsova
Peter the Great St.Petersburg Polytechnic University (SPbPU)
Email: anne.dontsoova@ya.ru
O. N. Stolyarov
Peter the Great St.Petersburg Polytechnic University (SPbPU)
Email: stolyarov_on@spbstu.ru
References
Киричков И.В. Тенденции развития складчатого формообразования в современной архитектуре // Архитектура и дизайн. 2019. № 2. С. 7–16. doi: 10.7256/2585-7789.2019.2.30833. EDN LGTSQW. Van der Woerd J.D., Chudoba R., Scholzen A., Hegger J. Oricrete // Beton- und Stahlbetonbau. 2013. Vol. 108. Issue 11. Рр. 774–782. doi: 10.1002/best.201300057 Valeri P., Guaita P., Baur R., Ruiz M.F., Fernández-Ordóñez D., Muttoni A. Textile reinforced concrete for sustainable structures: Future perspectives and application to a prototype pavilion // Structural Concrete. 2020. Vol. 21. Issue 6. Рр. 2251–2267. doi: 10.1002/suco.2019-00511 Spartali H., van der Woerd J.D., Hegger J., Chudoba R. Stress redistribution capacity of textile-reinforced concrete shells folded utilizing parameterized waterbomb patterns // The 2022 Annual Symposium of the International Association for Shell and Spatial Structures (IASS 2022). 2022. Рр. 96–106. doi: 10.5281/zenodo.10812858 Ярмош Т.С., Храбатина Н.В., Мирошниченко В.В. Складчатые конструкции. Перспективы развития новых форм // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2016. № 12. С. 71–75. doi: 10.12737/22829. EDN XBFADR. Du W., Liu Q., Zhou Z., Uddin N. Experimental investigation of innovative composite folded thin cylindrical concrete shell structures // Thin-Walled Structures. 2019. Vol. 137. Рр. 224–230. doi: 10.1016/j.tws.2019.01.014 Lee M., Mata-Falcón J., Kaufmann W. Load-deformation behaviour of weft-knitted textile reinforced concrete in uniaxial tension // Materials and Structures. 2021. Vol. 54. Issue 6. doi: 10.1617/s11527-021-01797-5 Zhu D., Bai X., Yao Q., Rahman M.Z., Li X., Yang T. et al. Effects of volume fraction and surface coating of textile yarns on the tensile performance of AR-glass textile reinforced concrete // Journal of Building Engineering. 2023. Vol. 71. P. 106420. doi: 10.1016/j.jobe.2023.106420 Kapsalis P., Tysmans T., Hemelrijck D.V., Triantafillou T. State-of-the-art review on experimental investigations of textile-reinforced concrete exposed to high temperatures // Journal of Composites Science. 2021. Vol. 5. Issue 11. P. 290. doi: 10.3390/jcs5110290 Alma’aitah M., Ghiassi B. Development of cost-effective low carbon hybrid textile reinforced concrete for structural or repair applications // Construction and Building Materials. 2022. Vol. 341. P. 127858. doi: 10.1016/j.conbuildmat.2022.127858 Kurban M., Babaarslan O., Çağatay İ.H. Investigation of the flexural behavior of textile reinforced concrete with braiding yarn structure // Construction and Building Materials. 2022. Vol. 334. P. 127434. doi: 10.1016/j.conbuildmat.2022.127434 Nikravan A., Aydogan O.G., Dittel G., Scheurer M., Bhat S., Ozyurt N. et al. Implementation of continuous textile fibers in 3d printable cementitious composite // Lecture Notes in Civil Engineering. 2023. Рр. 1243–1252. doi: 10.1007/978-3-031-32519-9_126 Zhang M., Deng M. Tensile behavior of textile-reinforced composites made of highly ductile fiber-reinforced concrete and carbon textiles // Journal of Building Engineering. 2022. Vol. 57. P. 104824. doi: 10.1016/j.jobe.2022.104824 Preinstorfer P., Yanik S., Kirnbauer J., Lees J.M., Robisson A. Cracking behaviour of textile-reinforced concrete with varying concrete cover and textile surface finish // Composite Structures. 2023. Vol. 312. P. 116859. doi: 10.1016/j.compstruct.2023.116859 Alwis L., Bremer K., Roth B. Fiber optic sensors embedded in textile-reinforced concrete for smart structural health monitoring: a review // Sensors. 2021. Vol. 21. Issue 15. P. 4948. doi: 10.3390/S21154948 Becks H., Bielak J., Camps B., Hegger J. App-lication of fiber optic measurement in textile-reinfor-ced concrete testing // Structural Concrete. 2022. Vol. 23. Issue 4. Рр. 2600–2614. doi: 10.1002/suco.202100252 Orlowsky J., Beßling M., Kryzhanovskyi V. Prospects for the use of textile-reinforced concrete in buildings and structures maintenance // Buildings. 2023. Vol. 13. Issue 1. P. 189. doi: 10.3390/buildings13010189 Paul S., Gettu R., Arnepalli D.N., Samanthula R. Experimental evaluation of the durability of glass Textile-Reinforced concrete // Construction and Building Materials. 2023. Vol. 406. P. 133390. doi: 10.1016/j.conbuildmat.2023.133390 Столяров О.Н. Тонкостенные строительные конструкции из текстильно-армированного бетона : дис. … д-ра техн. наук. СПб., 2023. 334 с. EDN LYPMCK. Alma’aitah M., Ghiassi B., Dalalbashi A. Durability of textile reinforced concrete: existing knowledge and current gaps // Applied Sciences. 2021. Vol. 11. Issue 6. P. 2771. doi: 10.3390/app11062771 Botelho Goliath K., Daniel D.C., de A. Silva F. Flexural behavior of carbon-textile-reinforced concrete I-section beams // Composite Structures. 2021. Vol. 260. P. 113540. doi: 10.1016/j.compstruct.2021.113540 Friese D., Scheurer M., Hahn L., Gries T., Cherif C. Textile reinforcement structures for concrete construction applications : a review // Journal of Composite Materials. 2022. Vol. 56. Issue 26. Рр. 4041–4064. doi: 10.1177/00219983221127181 Stüttgen S., Akpanya R., Beckmann B., Chudoba R., Robertz D., Niemeyer A.C. Modular construction of topological interlocking blocks — an algebraic approach for resource-efficient carbon-reinforced concrete structures // Buildings. 2023. Vol. 13. Issue 10. P. 2565. doi: 10.3390/buildings13102565 Vakaliuk I., Scheerer S., Curbach M. Vacuum-assisted die casting method for the production of filigree textile-reinforced concrete structures // Buildings. 2023. Vol. 13. Issue 10. P. 2641. doi: 10.3390/buildings-13102641 Vakaliuk I., Scheerer S., Curbach M. Numerical analysis of textile reinforced concrete shells: force interaction and failure types // CivilEng. 2024. Vol. 5. Issue 1. Рр. 224–246. doi: 10.3390/civileng5010012 Vakaliuk I., Scheerer S., Curbach M. The numerical analysis of textile reinforced concrete shells: basic principles // Applied Sciences. 2024. Vol. 14. Issue 5. P. 2140. doi: 10.3390/app14052140 Донцова А.Е., Столяров О.Н. Проектирование и изготовление прототипов тонкостенных бетонных пространственных конструкций покрытий для экспериментальных исследований // Современные строительные материалы и технологии. 2023. С. 66–71. EDN JQSAXP. Донцова А.Е., Столяров О.Н. Облегченные складчатые конструкции из текстильно-армированного бетона // Неделя науки ИСИ : сб. мат. Всерос. конф. 2023. С. 391–393. EDN FBKXFT. Донцова А.Е., Ольшевский В.Я., Столяров О.Н. Композитные трубы из текстильно-армированного бетона в инженерных системах зданий и сооружений // Неделя науки ИСИ : мат. Всерос. конф. 2021. С. 10–12. EDN IGCRCF. Донцова А.Е., Ольшевский В.Я., Столяров О.Н. Мониторинг утечек воды в бетонных конструкциях с использованием встроенных датчиков на основе углеродных нитей // Строительство и техногенная безопасность. 2022. № 26 (78). С. 71–80. EDN HGBALR. Stolyarov O.N., Dontsova A.E., Kozinetc G.L. Structural behavior of concrete arches reinforced with glass textiles // Magazine of Civil Engineering. 2023. № 6 (122). doi: 10.34910/MCE.122.2. EDN SBCQRH. Glowania M., Weichold O., Hojczyk M., Seide G., Gries T. Neue Beschichtungsverfahren für PVA-Zement-Composite in textilbewehrtem Beton. 2009. Dilthey U. Application of polymers in textile reinforced concrete: From the interface to construction elements // ICTRC’2006 — 1st International RILEM Conference on Textile Reinforced Concrete. 2006. Рр. 55–64. doi: 10.1617/2351580087.006 Dilthey U., Schleser M. Composite Improvement of TRC by Polymeric Impregnation of the Textiles // International Symposium Polymers in Concrete. 2006. P. 446. Quadflieg T., Leimbrink S., Gries T., Stolyarov O. Effect of coating type on the mechanical performance of warp-knitted fabrics and cement-based composites // Journal of Composite Materials. 2018. Vol. 52. Issue 19. Рр. 2563–2576. doi: 10.1177/0021998317750003 Vakaliuk I., Scheerer S., Curbach M. Numerical Analysis of TRC Shells — Force Interaction and Failure Types. 2023. doi: 10.20944/preprints202312.0700.v1 Koriakovtseva T.A., Dontsova A.E., Nemova D.V. Mechanical and thermal properties of an energy-efficient cement composite incorporating silica aerogel // Buildings. 2024. Vol. 14. Issue 4. P. 1034. doi: 10.3390/buildings14041034 Коряковцева Т.А., Заборова Д.Д. Испытания экологического бетонного композита на основе растительной добавки и угольного фильтра // Строительство и техногенная безопасность. 2023. № 30 (82). С. 47–57. EDN TVFVAF.
Supplementary files
