Experimental and numerical comparison of the stress-strain state of an arch and a combined arch structure
- Authors: Dolgusheva V.V.1, Ibragimov A.M.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 20, No 1 (2025)
- Pages: 37-49
- Section: Construction system design and layout planning. Construction mechanics. Bases and foundations, underground structures
- URL: https://journals.rcsi.science/1997-0935/article/view/358658
- ID: 358658
Cite item
Full Text
Abstract
Introduction. Experimental research projects of full-scale building roof constructions are labour-intensive, high-cost, and do not require placement in laboratories due to their large size. In this regard, tests of building constructions are often carried out on scale models. The operation of combined arch systems is poorly studied; calculation models of such systems require experimental confirmation. The presented experimental research project is aimed at obtaining data on the actual operation of the arch and a combined arch structure with radial ties for subsequent comparison of experimental data with calculation models.Materials and methods. The experimental model is developed using mixed similarity at a scale of 1:10. The physical and mechanical parameters of the model materials were determined using standard methods. A method for creating a given prestress in the arch ties and a method for testing it are developed and described. The calculation models are implemented in the LIRA-SAPR finite element software package, considering the geometrically nonlinear structure operation, the stresses in the arch sections are determined using the “Section Designer” processor.Results. Based on the results of experimental studies and numerical calculations, stresses and displacements in arch sections were obtained. The movements of the circuit, graphs of correspondence between experimental data and calculation results are shown. Directions for improving experimental models of such combined systems with ties are analyzed.Conclusions. An arch combined system with radial ties allows to equalize the stress values in the arch belt in comparison with an arch without ties. The maximum stresses in the arch sections and the maximum deflections in the middle of the arch span are reduced by 3 times when tightening is installed.
About the authors
V. V. Dolgusheva
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: DolgushevaVV@yandex.ru
ORCID iD: 0000-0002-8530-9546
A. M. Ibragimov
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: igasu_alex@mail.ru
References
Суворовцев Б.А. Особенности проектирования пролетных строений мостов комбинированных систем с гибкими наклонными подвесками // Современные технологии. Системный анализ. Моделирование. 2017. № 1 (53). С. 219–224. EDN YKRLYD. Юнусов А.С. Арочные конструкции, востребованные временем, в строительной науке и архитектуре // Инженерный вестник Дона. 2016. № 1 (40). С. 44. EDN WCNSXV. Arslan A. Bridges as City Landmarks: A Critical Review on Iconic Structures // Journal of Design Studio. 2020. Pp. 85–99. doi: 10.46474/798072 Danciu A.D., Guțiu Ș.I., Moga C., Dragomir M.L., Ciotlăuș M., Marusceac V. A Review of the Network Arch Bridge // Applied Sciences. 2023. Vol. 13. Issue 19. P. 10966. doi: 10.3390/APP131910966 Lai Y., Wu Y., Wang G. Novel long-span cable-stayed deck arch bridge: Concept and structural characteristics // Engineering Structures. 2024. Vol. 308. P. 118026. doi: 10.1016/j.engstruct.2024.118026 Li Y., Lai Y., Lu G., Yan F., Wei P., Xie Y.M. Innovative design of long-span steel–concrete composite bridge using multi-material topology optimization // Engineering Structures. 2022. Vol. 269. P. 114838. doi: 10.1016/j.engstruct.2022.114838 Xie X.L., Huang Y., Qin X. Conceptual design of a new type of single-tower cable-stayed arch bridge and study of its mechanical properties // Advances in Structural Engineering. 2021. Vol. 24. Issue 11. Pp. 2500–2511. doi: 10.1177/13694332211001506 Ибрагимов А.М., Гнедина Л.Ю., Долгушева В.В. Проблемы применения и проектирования арочных комбинированных систем // Вестник Поволжского государственного технологического университета. Серия: Материалы. Конструкции. Технологии. 2021. № 2. С. 25–35. doi: 10.25686/2542-114X.2021.2.25. EDN PKRRXZ. Burford N.K., Smith F.W., Gengnagel C. The Evolution of Arches as Lightweight Structures: A History of Empiricism and Science // Proceedings of the Third International Congress on Construction History. Cottbus, 2009. P. 267274. Трянина Н.Ю., Тестоедов П.С. Исследование вопроса живучести стальных сетчатых покрытий // Приволжский научный журнал. 2015. № 1 (33). С. 9–14. EDN TMJZXV. Трянина Н.Ю., Карзанов М.А. Исследование работы арочных конструкций с системой наклонных тяг // Приволжский научный журнал. 2011. № 2 (18). С. 16–19. EDN NURPZJ. Dolgusheva V.V., Ibragimov A.M. Operation Analysis of the Main Arch-Cable-Stayed Systems When Operating Under Unevenly Distributed and Asymmetrically Working Loads // Lecture Notes in Civil Engineering. 2022. Pp. 44–54. doi: 10.1007/978-3-030-91145-4_5 Долгушева В.В., Ибрагимов А.М., Долгушев Т.В. Рациональное конструктивное решение комбинированной арочной системы с наклонными тягами // Academia. Архитектура и строительство. 2023. № 2. С. 168–174. doi: 10.22337/2077-9038-2023-2-168-174. EDN GCKCKR. Guo X., Li Q., Zhang D., Gong J. Structural Behavior of an Air-Inflated Fabric Arch Frame // Journal of Structural Engineering. 2016. Vol. 142. Issue 2. doi: 10.1061/(ASCE)ST.1943-541X.0001374 Alegria Mira L., Thrall A.P., De Temmerman N. Deployable scissor arch for transitional shelters // Automation in Construction. 2014. Vol. 43. Pp. 123–131. doi: 10.1016/j.autcon.2014.03.014 Trenz J., Zlatuška K., Necas R. Experimental model of plan curved footbridge supported by arch // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 960. Issue 4. P. 042070. doi: 10.1088/1757-899x/960/4/042070 Han Q.H., Xu Y., Lu Y., Xu J., Zhao Q.H. Failure mechanism of steel arch trusses: Shaking table testing and FEM analysis // Engineering Structures. 2015. Vol. 82. Pp. 186–198. doi: 10.1016/j.engstruct.2014.10.013 Clarke M.J., Hancock G.J. Tests and Nonlinear Analyses of Small-Scale Stressed-Arch Frames // Journal of Structural Engineering. 1995. Vol. 121. Issue 2. Pp. 187–200. doi: 10.1061/(ASCE)0733-9445(1995)121:2(187) Misseri G., Rovero L., Stipo G., Barducci S., Alecci V., De Stefano M. Experimental and analytical investigations on sustainable and innovative strengthening systems for masonry arches // Composite Structures. 2019. Vol. 210. Pp. 526–537. doi: 10.1016/j.compstruct.2018.11.054 Lu P., Zhang J., Li D., Zhou Y., Shi Q. Conceptual design and experimental verification study of a special-shaped composite arch bridge // Structures. 2021. Vol. 29. Pp. 1380–1389. doi: 10.1016/j.istruc.2020.12.018 Ferrero C., Calderini C., Roca P. Experimental response of a scaled dry-joint masonry arch subject to inclined support displacements // Engineering Structures. 2022. Vol. 253. P. 113804. doi: 10.1016/j.engstruct.2021.113804 Mentese V.G., Gunes O., Celik O.C., Gunes B., Avsin A., Yaz M. Experimental collapse investigation and nonlinear modeling of a single-span stone masonry arch bridge // Engineering Failure Analysis. 2023. Vol. 152. P. 107520. doi: 10.1016/j.engfailanal.2023.107520 Liu A.R., Huang Y.H., Fu J.Y., Yu Q.C., Rao R. Experimental research on stable ultimate bearing capacity of leaning-type arch rib systems // Journal of Constructional Steel Research. 2015. Vol. 114. Pp. 281–292. doi: 10.1016/j.jcsr.2015.08.011 Mora-Gómez J. Historical iron tie-rods in vaulted structures: parametrical study through a scaled model // WIT Transactions on The Built Environment. 2015. Vol. 1. Pp. 669–680. doi: 10.2495/STR150561 Киселёв Д.Б. Работа комбинированной арочной системы с учетом геометрической нелинейности и последовательности монтажа : дис. … канд. техн. наук. М., 2009. 120 с. Dolgusheva V., Ibragimov A., Dolgushev T. Robustness of the combined arch system with radial ties // E3S Web of Conferences. 2023. Vol. 389. P. 01053. doi: 10.1051/e3sconf/202338901053 Еремеев П.Г. Справочник по проектированию современных металлических конструкций большепролетных покрытий. М. : Ассоциация строительных вузов, 2011. 256 с. EDN QNPJIX. Драгунов Ю.Г., Зубченко А.С., Каширский Ю.В. Марочник сталей и сплавов. М., 2014. 1215 с.
Supplementary files
