Review of experience in the construction of NPP using modular structures with external sheet reinforcement

Cover Page

Cite item

Full Text

Abstract

Introduction. To increase the competitiveness of domestic NPP projects, it is necessary to reduce the construction time to 36 months. One of the ways to solve this problem is industrialization of the construction process, which uses prefabricated elements in the form of volumetric units with sheet steel cladding. The paper reviews open sources of information on the experience of erecting nuclear power plants using modular reinforced concrete structures with external sheet reinforcement. The following projects were considered: AR-1000 by Westinghouse (USA) and ATS-1000 (SNERDI).Materials and methods. On the basis of analysis, generalization and systematization of information obtained from open sources, the authors reviewed the practical experience of application of structures with external sheet reinforcement in the construction of NPP (under the AP-1000 and CAP-1000 projects) at the following facilities: Sanmen, Haiyang, Xudabao and Lianjiang (China), V.C. Summer and Vogle (USA).Results. The main method of erection in the implementation of NPP projects using modular reinforced concrete structures with external sheet reinforcement was the erection of extra-large units using the open-top technology. The use of such technology imposes higher requirements to the design documentation, manufacturing of unit modules requires strict control of logistic risks. Lack of quality control methods for compaction of monolithic concrete placed in the structure increases the requirements to the quality of concrete mixtures and technology of their placement.Conclusions. In general, the technology of modular construction using reinforced concrete structures with external sheet reinforcement allows to significantly reduce labor costs of erecting structures directly on the construction site. However, based on the results of analyzing the experience of implementation of AR-1000 and SAR-1000 design solutions, it was found that additional logistical risks and risks of ensuring the quality of monolithic concrete placement arise when implementing this technology.

About the authors

D. N. Korotkikh

Orgenergostroy Institute (OES); Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: Korotkih.dmitry@gmail.com
ORCID iD: 0000-0002-5041-0847
SPIN-code: 6391-7829

O. A. Kornev

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: i@okornev.ru
ORCID iD: 0009-0009-5545-5284

V. V. Belov

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: BelovVV@mgsu.ru
ORCID iD: 0000-0002-6246-6100
SPIN-code: 6936-1160

A. S. Silantiev

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: silantievas@structure.center

D. E. Kapustin

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: kde90@bk.ru
ORCID iD: 0000-0002-6493-1301
SPIN-code: 6645-1159

References

  1. Shykinov N., Rulko R., Mroz D. Importance of advanced planning of manufacturing for nuclear industry // Management and Production Engineering Review. 2016. Vol. 7. Issue 2. Pp. 42–49. doi: 10.1515/mper-2016-0016
  2. Соловьева А.П., Харитонов В.В., Шмаков О.Г. Влияние задержек в строительстве АЭС на эффективность инвестиций // Известия высших учебных заведений. Ядерная энергетика. 2018. № 3. С. 52–62. doi: 10.26583/npe.2018.3.05. EDN YYCGKT.
  3. Пергаменщик Б.К. Проблемы и перспекти-вы строительства АЭС // Вестник МГСУ. 2014. № 2. С. 140–152.
  4. Пергаменщик Б.К., Темишев P.P. Изменение величины трудозатрат при укрупнении специальных конструкций АЭС // Вестник МГСУ. 2012. № 1. С. 138–143. EDN PCITJB.
  5. Морозенко А.А., Шашков А.А. Организационно-технологические аспекты крупноблочного возведения атомных электростанций // Наука и бизнес: пути развития. 2019. № 5 (95). С. 28–33. EDN YEMCPG.
  6. Mun Tae Youp, Sun Won Sang, Kim Keun Kyeong, Lee Ung Kwon. A study on the constructability of steel plate concrete structure for nuclear power plant // Transactions of the Korean Nuclear Society Spring Meeting Gyeongju. 2008. Pp. 755–756.
  7. Burgan B., Kyprianou C., Bingham S., Waterhouse S. A novel steel–concrete composite system for modular nuclear reactors // Proceedings of the Institution of Civil Engineers — Energy. 2017. Vol. 170. Issue 2. Pp. 80–90. doi: 10.1680/jener.16.00022
  8. Akiyama H., Sekimoto H., Fukihara M., Nakanishi K., Hara K. A compression and shear loading tests of concrete filled steel bearing wall // 11nd Conference on Structural Mechanics in Reactor Technology (SMiRT-11). 1991. Vol. H. Issue 12/2. Pp. 323–328.
  9. Bruhl J.C., Varma A.H., Johnson W.H. Design of SC composite walls for projectile impact: local failure // 22nd Conference on Structural Mechanics in Reactor Technology (SMiRT-22). 2013. Division X. Pp. 1–10.
  10. Merrifield J. Nuclear Construction 101 // Shaw’s Power Group, Nuclear Regulatory Commission (NRC). 2011. 127 p.
  11. Larson A. 85 % of Major Equipment Delivered to V.C. Summer Nuclear Power Plant Construction Site // POWER Magazine. 2016. URL: https://www.powermag.com/85-of-major-equipment-delivered-to-v-c-summer-nuclear-power-plant-construction-site/
  12. Walker B. Modular design and benefits // ASME Nuclear Technical Seminars: Blueprint for New Build. 2011. 42 p. URL: https://files.asme.org/Events/NTS2011/28766.pdf
  13. Niemer K., Martin J. AP-1000 Module Status NRC Region II // SNC Meeting. Birmingham: “Shaw”, “Nuclear Regulatory Commission” (NRC). 2009. 52 p. URL: https://www.nrc.gov/docs/ML0914/ML091480384.pdf
  14. Larson A. Last Major Module Received at Vogtle Nuclear Site // POWER Magazine. 2019. URL: https://www.powermag.com/last-major-module-received-at-vogtle-nuclear-site/
  15. Deng X. Modularization Construction Experiences of World First AP1000 Unit // IAEA workshop. 2011. 57 p. URL: https://studylib.net/doc/18793120/modularization-construction-of-world-first-ap1000-unit
  16. Torres A. VC Summer Unit 2/3 Update // SCANA/South Carolina Electric & Gas. 2014. 21 р. URL: https://www.nrc.gov/docs/ML1414/ML14141-A402.pdf
  17. Varma A.H. Composite concrete construction: modularity, innovation, resilience and sustainability through design // Purdue University. 2016. 29 p. URL: http://energy.mit.edu/wp-content/uploads/2017/02/1-4.-Composite-Concrete-Construction-MIT-2017-min.pdf
  18. Chunlin Hou. Nuclear Regulations in China, Status of Sanmen NPP Construction and Experience Gained at NRC // Nuclear Regulatory Commission. 2010. 29 p. URL: https://www.nrc.gov/docs/ML1029/ML102990200.pdf

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».