Theoretical basis for quantitative evaluation of the expansion of the leading hole of a crushed stone bored pile in a nonlinear setting
- Authors: Ter-Martirosyan A.Z.1, Thiem T.M.1
-
Affiliations:
- Moscow State University of Civil Engineering (National ResearchUniversity) (MGSU)
- Issue: Vol 19, No 10 (2024)
- Pages: 1641-1650
- Section: Hydraulics. Geotechnique. Hydrotechnical construction
- URL: https://journals.rcsi.science/1997-0935/article/view/276626
- ID: 276626
Cite item
Full Text
Abstract
Introduction. It is known that various methods are used to compact soft soils at depth, including the creation of soil columns by volumetric expansion of a portion of material (crushed stone, sand, etc.) under the influence of vertical load at the bottom of the well. With an increase in vertical load, the diameter of the working material increases to a certain value, resulting in significant radial and tangential stresses in the surrounding soft soil. This work is devoted to the development of the theoretical foundations for the manufacture of crushed stone bored piles that make it possible to quantify the stress-strain state in a soil cylinder due to the expansion of the diameter of the leading well. The formulation and solution of the problem of estimating the stress-strain state of a thick-walled soil cylinder of limited dimensions (diameter, height) with the diameter of a well are presented. Essentially, this is the well-known Lame problem of a thick-walled pipe.Materials and methods. The problem was considered in linear and nonlinear formulations. The solution was obtained by the analytical method. To estimate the stress-strain state of a thick-walled soil cylinder, the solution to the Lame problem of a thick-walled pipe and the system of Genki physical equations was used.Results. The expressions are obtained to determine the radial displacement of the borehole wall, radial and tangential stresses in the soil cylinder. The curves dependency of the radial displacement on radial pressure of borehole wall are shown. The achieved results are illustrated with graphics.Conclusions. The obtained solutions can be used to determine the radial displacement of the borehole wall during deep compaction of soft soils in linear and nonlinear formulations by adding crushed stone columns. The curves dependency of the radial displacement on radial pressure of borehole wall with various stiffness and strength parameters of the surrounding soils, as well as geometric parameters are presented.
About the authors
A. Z. Ter-Martirosyan
Moscow State University of Civil Engineering (National ResearchUniversity) (MGSU)
Email: gic-mgsu@mail.ru
ORCID iD: 0000-0001-8787-826X
Tran Manh Thiem
Moscow State University of Civil Engineering (National ResearchUniversity) (MGSU)
Email: tranmanhthiem@gmail.com
ORCID iD: 0009-0001-5151-0030
References
- Barron R.A. Consolidation of fine-grained soils by drain wells // Transactions of the American Society of Civil Engineers. 1948. Vol. 113. Issue 1. Рр. 718–742. doi: 10.1061/taceat.0006098
- Shrivastava R.P., Shroff A.V. Theoretical simulation of experimental results with barron’s theory for consolidation of soft clay by radial flow using PVD // Lecture Notes in Civil Engineering. 2022. Рр. 275–291. doi: 10.1007/978-981-16-5605-7_25
- Basack S., Indraratna B., Rujikiatkamjorn C., Siahaan F. Modeling the stone column behavior in soft ground with special emphasis on lateral deformation // Journal of Geotechnical and Geoenvironmental Engineering. 2017. Vol. 143. Issue 6. doi: 10.1061/(asce)gt.1943-5606.0001652
- Indraratna B., Basack S., Rujikiatkamjorn C. Numerical solution of stone column–improved soft soil considering arching, clogging, and smear effects // Journal of Geotechnical and Geoenvironmental Engineering. 2013. Vol. 139. Issue 3. Рр. 377–394. doi: 10.1061/(asce)gt.1943-5606.0000789
- Kim Y.T., Nguyen B.P., Yun D.H. Analysis of consolidation behavior of PVD-improved ground considering a varied discharge capacity // Engineering Computations. 2018. Vol. 35. Issue 3. Рр. 1183–1202. doi: 10.1108/ec-06-2017-0199
- Basack S., Nimbalkar S. Load-settlement characteristics of stone column reinforced soft marine clay deposit: combined field and numerical studies // Sustainability. 2023. Vol. 15. Issue 9. P. 7457. doi: 10.3390/su15097457
- Pandey B.K., Rajesh S., Chandra S. Time-dependent behavior of embankment resting on soft clay reinforced with encased stone columns // Transportation Geotechnics. 2022. Vol. 36. P. 100809. doi: 10.1016/j.trgeo.2022.100809
- Thakur A., Rawat S., Gupta A.K. Experimental study of ground improvement by using encased stone columns // Innovative Infrastructure Solutions. 2021. Vol. 6. Issue 1. doi: 10.1007/s41062-020-00383-y
- Shehata H.F., Sorour T.M., Fayed A.L. Effect of stone column installation on soft clay behavior // International Journal of Geotechnical Engineering. 2021. Vol. 15. Issue 5. Рр. 530–542. doi: 10.1080/19386362.2018.1478245
- Minaev O.P. The selection and use method of sandy ground compaction // Magazine of Civil Engineering. 2014. No. 7 (51). Рр. 66–73. doi: 10.5862/MCE.51.8. EDN SYSMWF.
- Минаев О.П. Основы и методы уплотнения грунтов оснований для возведения зданий и сооружений : автореф. дис. … д-ра техн. наук. М., 2018. 36 с.
- Уколов С.А., Трепалин В.А., Викулова Л.Н., Симонова А.С. Совершенствование методов оценки степени уплотнения грунтов // Инженерный вестник Дона. 2023. № 5 (101). С. 590–598. EDN HWXPXX.
- Сеськов В.Е. Уплотнение насыпных грунтов в сложных инженерно-геологических условиях // Геотехника Беларуси: наука и практика : мат. Междунар. науч.-техн. конф., посвящ. 60-летию кафедры оснований, фундаментов и инженерной геологии и 90-летию со дня рождения профессора Юрия Александровича Соболевского. 2013. С. 254–263.
- Кочерженко В.В., Сулейманова Л.А. Инновационные свайные технологии в современном фундаментостроении // Вестник Белгородского государственного технологического университета им. В.Г. Шухова. 2022. № 4. С. 57–67. doi: 10.34031/2071-7318-2021-7-4-57-67. EDN ZPPWAA.
- Тер-Мартиросян З.Г., Тер-Мартиросян А.З., Анжело Г.О. Взаимодействие нефильтрующей щебеночной сваи (колонны) с окружающим консолидирующим грунтом и ростверком в составе свайно-плитного фундамента // Жилищное строительство. 2019. № 4. С. 19–23. doi: 10.31659/0044-4472-2019-4-19-23. EDN WQAGEY.
- Христич Д.В., Астапов Ю.В., Артюх Е.В., Соколова М.Ю. Нелинейная модель деформирования сжимаемых грунтов // Известия Тульского государственного университета. Науки о Земле. 2019. № 4. С. 305–312. EDN KHRLPM.
- Hencky H. Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen // ZAMM — Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 1924. Vol. 4. Issue 4. Рp. 323–334. doi: 10.1002/zamm.19240040405
- Осман А. Напряженно-деформированное состояние не полностью водонасыщенных оснований при статическом и динамическом воздействиях : дис. … канд. техн. наук. М., 2023. 139 с. EDN GVDZJP.
- Дам Х.Х. Осадка и несущая способность барреты и барретного фундамента с учетом упруго-вязких и упруго-пластических свойств грунтов : дис. … канд. техн. наук. М., 2023. 152 с. EDN VPUZFE.
- Casagrande A. The Determination of the Pre-Consolidation Load and its Practical Significance // Proceedings of the 1st International Conference on Soil Mechanics. 1936. Vol. 3.
- Тер-Мартиросян З.Г., Тер-Мартиросян А.З., Курилин Н.О. Осадка и несущая способность оснований фундаментов конечной ширины // Основания, фундаменты и механика грунтов. 2021. № 1. С. 8–13. EDN PZXDZM.
- Струнин П.В. Напряженно-деформированное состояние грунтоцементных свай, взаимодействующих с грунтовым основанием и межсвайным пространством : дис. … канд. техн. наук. М., 2013. 168 с. EDN SCEGHR.
Supplementary files
