Planning of construction supply system in constrained conditions using the dynamic programming method

Cover Page

Cite item

Full Text

Abstract

Introduction. The application of the dynamic programming method is widely used to solve optimization problems in construction. Depending on the complexity of the project and the conditions during the construction of buildings and structures, making optimal decisions may require the analysis of a large amount of data and options. Dynamic programming allows you to consider an optimization problem as a sequence of subproblems that can be solved separately and then combined into an overall solution. This makes it possible to simplify the process of planning and project management, which is relevant for making organizational and technological decisions in the material and technical supply of construction in dense urban areas, as well as for increasing the efficiency and competitiveness of the construction industry as a whole.Materials and methods. The study uses the method of mathematical formalization of conditions, efficient supply of resources, the method of dynamic programming and the method of graph interpretation of results.Results. The supply system for construction production was optimized for multi-threaded organization of work; based on the optimization results, the optimal distribution of resources was determined and a network diagram of the movement of cargo flows was constructed during the considered stage of building construction. An algorithm was developed for planning the supply schedule for the continuous method of delivering resources to the construction site.Conclusions. The organization of resource support for construction and installation work in cramped conditions must take into account a number of restrictions caused by these conditions. Reducing inventory is critical to maintaining a stock-free supply chain. In addition, with the continuous construction method, there is a risk of increasing inventory due to the dynamics of demand for materials and equipment while work is carried out in parallel. The use of the dynamic programming method made it possible at the planning stage to avoid the occurrence of shortages and exceeding the maximum stock of material resources and to select their optimal distribution at the considered stage of construction and installation work.

About the authors

Ya. D. Ageeva

Novosibirsk State University of Architecture and Civil Engineering (Sibstrin)

Email: ya.ageyeva@sibstrin.ru
ORCID iD: 0009-0004-5827-0238
SPIN-code: 7587-8474

Yu. A. Chirkunov

Novosibirsk State University of Architecture and Civil Engineering (Sibstrin)

Email: chr102@yandex.ru
ORCID iD: 0000-0001-7128-0757
SPIN-code: 2688-5663

A. A. Lapidus

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: Lapidusaa@mgsu.ru
ORCID iD: 0000-0001-7846-5770
SPIN-code: 8192-2653

References

  1. Болодурина И.П., Спешилов Е.А. Математические и инструментальные средства обеспечения интеллектуальной системы поддержки принятия решений по управлению грузопотоками // Прикладная математика и вопросы управления. 2023. № 2. С. 93–107. doi: 10.15593/2499-9873/2023.2.09. EDN HILJFN.
  2. Lamekhov V., Chervotenko E. Usage of dynamic programming method in transport and logistics centers construction and development projects // Advances in Intelligent Systems and Computing. In book: VIII International Scientific Siberian Transport Forum. 2020. Vol. 1115. Рр. 357–366. doi: 10.1007/978-3-030-37916-2_35
  3. Дюкова О.М. Логистика строительства: современное понимание и тенденции // Вестник УРАО. 2017. № 4. С. 69–73. EDN OAGRQH.
  4. Карпушкин И.Д. Актуальные вопросы логистики строительства на современном этапе // Основы ЭУП. 2023. № 2 (37). С. 95–99. doi: 10.51608/23058641_2023_2_95. EDN RQMEEP.
  5. Седов Д.С. Факторы стесненности в условиях плотной городской застройки // Вестник МГСУ. 2010. № 4 (1). С. 171–174. EDN NEJDSH
  6. Putz D., Schwabeneder D., Auer H., Fina B. A comparison between mixed-integer linear programming and dynamic programming with state prediction as novelty for solving unit commitment // International Journal of Electrical Power & Energy Systems. 2021. Vol. 125. Рр. 3–12. doi: 10.1016/j.ijepes.2020.106426
  7. Mizutania E., Dreyfus S. A tutorial on the art of dynamic programming for some issues concerning Bellman’s principle of optimality // ICT Express. 2023. Vol. 9. Рр. 1144–1161. doi: 10.1016/j.icte.2023.07.001
  8. Sun J., Apornak A., Ma G. Presenting a mathematical model for reduction of delays in construction projects considering quality management criteria in uncertainty condition // Journal of Engineering Research. 2023. doi: 10.1016/j.jer.2023.08.021
  9. Kedir F., Hall M.D. Resource efficiency in industrialized housing construction : a systematic review of current performance and future opрortunities // Journal of Cleaner Production. 2021. Vol. 286. P. 15. doi: 10.1016/j.jclepro.2020.125443
  10. Zhang Y. A survey of dynamic programming algorithms // Apрlied and Computational Engineering. 2024. Vol. 35 (1). Рр. 183–189. doi: 10.54254/2755-2721/35/20230392
  11. Khaled E., Hisham S. Dynamic site layout planning using apрroximate dynamic programming // Journal of Computing in Civil Engineering. 2009. Vol. 23 (2). Рр. 119–127. doi: 10.1061/(ASCE)0887-3801(2009)23:2(119)
  12. Шрамко А.П. Оптимизация транспортно-технологических процессов методом динамического программирования // Морские интеллектуальные технологии. 2021. № 4 (1). С. 184–194. doi: 10.37220/MIT.2021.54.4.050. EDN UGPEGW.
  13. Басараб А. Применение динамического программирования в задачах управления профессиональными рисками в строительстве // Безопасность в техносфере. 2017. № 6 (6). С. 47–53. doi: 10.12737/article_5af024e4e17da6.63463049. EDN XNBWQP.
  14. Пименов С.И. Строительная информационная модель // Вестник ПНИПУ. Строительство и архитектура. 2022. № 3 (13). С. 72–84. doi: 10.15593/2224-9826/2022.3.07
  15. Taghaddos M., Mousaei A., Taghaddos H., Hermann U., Mohamed Y., AbouRizk S. Optimized variable resource allocation framework for scheduling of fast-track industrial construction projects // Automation in Construction. 2024. Vol. 158. P. 24. doi: 10.1016/j.autcon.2023.105208
  16. Essien J. Apрlication of branch and bound and dynamic Programming in demand forecasting for supрly chain optimization // International Journal of Science and Research. 2023. Vol. 12 (5). Рр. 2617–2623. doi: 10.21275/SR23528175430
  17. Шепелев В.Д., Альметова З.В., Шепелева Е.В., Алферова И.Д. Использование маневровых транспортных средств для сокращения простоев в пункте оборота // Вестник Южно-Уральского государственного университета. Серия: Экономика и менеджмент. 2018. № 3. С. 169–175. doi: 10.14529/em180320. EDN YBJWQX.
  18. Ran Y. Optimizing operations management and business analytics strategies under uncertainty: dynamic programming // Advances in Economics Management and Political Sciences. 2023. Vol. 49 (1). Рр. 150–156. doi: 10.54254/2754-1169/49/20230507
  19. Louadj K., Aidene M. Direct method for resolution of optimal control problem with free initial condition // International Journal of Differential Equations. 2012. Vol. 6. P. 18. doi: 10.1155/2012/173634
  20. Мамонтова Е.В., Воейко О.А. Применение бережливого производства при оценке качества управления отходами // Компетентность. 2024. № 1. С. 51–56. doi: 10.24412/1993-8780-2024-1-51-57
  21. Ильюк В.В., Кузнецов О.А. Повышение эффективности управления логистическими потоками // Вестник РМАТ. 2023. № 2. C. 21–26. EDN WDCNDI.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).