Research of efficiency of ferrous metallurgy slag use in pavement base layers

Cover Page

Cite item

Full Text

Abstract

Introduction. The results of research of metallurgical slags characteristics are presented, the possibility of their application in organomineral mixtures for pavement base layers is considered, taking into account technological features of their preparation and indicators of operational properties. The research topic is relevant both for individual regions and for the country as a whole. The amount of waste from metallurgical production increases annually and is estimated in hundreds of millions of tons. The main direction of reducing production waste is their disposal. This problem is becoming even more urgent against the background of constantly decreasing reserves of natural materials, the increase in demand for which is due to the high rates of development of material production and the acceleration of scientific and technological progress. Thus, the use of slag materials in road construction will not only contribute to waste disposal, but will also solve a number of environmental and economic problems. The aim of the research is a comprehensive study of the influence of ferrous metallurgy slags on the physical, mechanical and operational properties of organomineral mixtures of pavement base layers and substantiation of their effective application in road construction. To achieve this goal, it is necessary to perform the following tasks: 1) to determine the chemical analysis of the studied slags and to study the mechanism of interaction of slag materials with binders; 2) to assess the degree of influence of slag materials on the physical, mechanical and operational properties of organomineral mixtures; 3) to develop a methodology for determining the accumulation of residual deformations in organomineral mixtures and to establish patterns of their change over time; 4) to determine the modulus of stiffness and the number of cycles to failure in the studied organomineral mixtures, depending on the nature of the origin of the material. Steelmaking slags of ferrous metallurgy can contribute to the production of organomineral mixtures with increased physical, mechanical and operational properties due to the increased content of calcium compounds, microporous additions of the crystal structure and active hydration processes, which can have a beneficial effect on the durability of the structural layer of the pavement when used.Materials and methods. All materials used in this study were subjected to tests to determine their physical and mechanical parameters, and materials representing industrial by-products were additionally subjected to chemical analysis. This approach made it possible to assess the compliance of inert materials with the requirements imposed in the Russian Federation for starting materials for their use in organomineral mixtures, and to identify critical characteristics of materials that can affect the strength and performance properties. The use of waste from the metallurgical industry has a number of advantages over conventional natural materials, including low economic and environmental costs. Converter and blast furnace slags of various granulometry were used as waste products of the metallurgical industry. An X-ray fluorescence test was performed to assess the chemical composition of steelmaking slags. The sulfur content was determined on an elemental analyzer by burning a specimen at a temperature of 1350 °C. Carbon content was determined on a total organic carbon analyzer by burning a specimen at a temperature of 950 °C. The analysis of other components was carried out on an atomic emission spectrometer with inductively coupled plasma after decomposition of the specimen with a mixture of inorganic acids. To select the compositions of organomineral mixtures based on a complex binder, studies were carried out to study the nature of the interaction of an organic binder with slags. To assess the effectiveness of the use of the studied slag materials, optimal compositions of organomineral mixtures were selected in accordance with GOST 30491–2012, from which cylindrical specimens were made and tested for indicators of physical and mechanical properties, as well as plate specimens and beam specimens for performance properties. During the experimental studies, a universal device for compression and bending testing, Unifame 70-TO108E, and a test press were used. The degree of stability of specimens from organomineral mixtures to the accumulation of residual deformations was assessed using a dynamic testing device (patent No. RU 152287 U1), in accordance with the test procedure developed for this purpose. To assess the performance parameters in terms of modulus of rigidity and the number of cycles to failure and water resistance, the test methodology used to assess the quality of asphalt concrete properties was adapted, taking into account the technological conditions characteristic of organomineral mixtures. For these purposes, the CRT-RC-H2 device was used, simulating the operation of a roller, and the CRT-SA4PT-BB device, which is a servo-pneumatic system that supplies a sinusoidal load with constant deformation and frequency to the specimen beam.Research results. The chemical and elemental composition of slag materials is analyzed, on the basis of which the main directions of the possibility of using metallurgical industry waste in the road industry are determined. The mechanism of interaction of slag gravel and sand with binders was studied. It was established that the use of steelmaking slags makes it possible to increase the strength and performance properties of organomineral mixtures. Test conditions were developed and a method for evaluating the water resistance of specimens from an organomineral mixture according to the tensile strength under indirect tension and resistance to the accumulation of residual deformations was tested. A method for assessing the stability of organomineral mixtures to the accumulation of residual deformations on a dynamic test device is proposed and the dependence of the change in the indicator over time is established. According to the results of experimental studies, the expediency, economic and environmental efficiency of using waste from the metallurgical industry in the layers of the base of the pavement structure was confirmed.Conclusions. A chemical analysis of steelmaking slags was performed, their positive sides were noted and the mechanism of their interaction with binders was studied. Steelmaking slags of ferrous metallurgy made it possible to obtain organomineral mixtures with increased physical, mechanical and operational properties relative to similar mixtures of natural mineral materials. For the first time, within the framework of experimental studies, the actual values of operational properties were obtained in terms of “residual deformations”, “modulus of rigidity” and “number of cycles to failure” in organomineral mixtures of natural and slag materials, which can be used in making design decisions. The use of organomineral mixtures of slag materials in the base layers slows down the accumulation of residual deformations by 30–35 % relative to similar mixtures of natural mineral materials, which makes it possible to extend the service life of the structural layer of the pavement.

About the authors

S. A. Chernov

Don State Technical University (DSTU)

Email: sergey_a_chernov@mail.ru
ORCID iD: 0009-0007-5532-2604

E. V. Lekontsev

Center for Innovative Competences Dorinzhservice LLC

Email: cikdis@mail.ru
ORCID iD: 0009-0006-4245-6286

V. S. Schreiner

Don State Technical University (DSTU)

Email: hanna0504@mail.ru

A. V. Fuchs

Limited Liability Company “BFB” (LLC “BFB”)

Email: comerc@dornerud.ru

A. I. Piskunov

Public Joint Stock Company “Novolipetsk Iron and Steel Works” (NLMK PJSC)

Email: piskunov_ai@nlmk.com

References

  1. Abdullah H.H., Shahin M.A., Walske M.L., Karrech A. Cyclic behaviour of clay stabilised with fly-ash based geopolymer incorporating ground granulated slag // Transportation Geotechnics. 2021. No. 26. Р. 100430. doi: 10.1016/j.trgeo.2020.100430
  2. Шестаков Н.И., Коршунов А.В., Путилин C.В. Перспективы применения шлака медеплавильного производства в дорожном строительстве // Строительство и реконструкция. 2021. № 6. С. 90–97. doi: 10.33979/2073-7416-2021-98-6-90-97. EDN HSHJQP.
  3. Пименов А.Т., Прибылов В.С. Применение шлаковых заполнителей в составе асфальтобетона для повышения долговечности дорожных покрытий // Вестник СибАДИ. 2019. № 16 (6). С. 766–769. doi: 10.26518/2071-7296-2019-6-766-779. EDN UDBGMM.
  4. Motevalizadeh S.M., Sedghi R., Rooholamini H. Fracture properties of asphalt mixtures containing electric arc furnace slag at low and intermediate temperatures // Construction and Building Materials. 2020. No. 240. Article 117965. doi: 10.1016/j.conbuildmat.2019.117965
  5. Keymanesh M.R., Ziari H., Zalnezhad H., Zalnezhad M. Mix design and performance evaluation of microsurfacing con-tainingelectric arc furnace (EAF) steel slag filler // Construction and Building Materials. 2020. Article 121336. doi: 10.1016/j.conbuildmat.2020.121336
  6. Orešković M., Santos J., Mladenović G., Rajaković-Ognjanović V. The feasibility of using copper slag in asphalt mixtures for base and surface layers based on laboratory results // Construction and Building Materials. 2023. Р. 384. Article 131285. doi: 10.1016/j.conbuildmat.2023.131285
  7. Raposeiras A.C., Movilla-Quesada D., Bilbao-Novoa R., Cifuentes C., Ferrer-Norambuena G., Castro-Fresno D. The use of copper slags as an aggregate replacement in asphalt mixes with RAP: physical–chemical and mechanical behavioural analysis // Construction and Building Materials. 2018. No. 190. Рр. 427–438. doi: 10.1016/j.conbuildmat.2018.09.120
  8. Yang J., Liu L., Zhang G., Ding Q., Sun X.The Preparation of Ground Blast Furnace Slag-Steel Slag Pavement Concrete Using Different Activators and Its Performance Investigation // Buildings. 2023. No. 13 (7). Р. 1590. doi: 10.3390/buildings13071590
  9. Cahyani R.A.T., Rusdianto Y. An Overview of Behaviour of Concrete with Granulated Blast Furnace Slag as Partial Cement Replacement // IOP Conference Series Earth and Environmental Science. 2021. No. 933 (1). Р. 012006. doi: 10.1088/1755-1315/933/1/012006
  10. Ahmad J., Kontoleon K.J., Majdi A., Naqash M.T., Deifalla A.F., Ben Kahla N. et al. A Comprehensive Review on the Ground Granulated Blast Furnace Slag (GGBS) in Concrete Production // Sustainability. 2022. No. 14. P. 8783. doi: 10.3390/su14148783
  11. Popescu D., Burlacu A. Considerations on the benefits of using recyclable materials for road construction // Romanian Journal of Transport Infrastructure. 2017. No. 6. Pр. 43–53. doi: 10.1515/rjti-2017-0053
  12. Icula L.M., Corbu O., Iliescu M., Dumitraș D.G. Using the blast furnace slag as alternative source in mixtures for the road concrete for a more sustainable and a cleaner environment // Romanian Journal of Transport Infrastructure. 2020. No. 50. Рр. 545–555.
  13. Ling Y., Wang K., Li W., Shi G., Lu P. Effect of slag on the mechanical properties and bond strength of fly ash — Based engineered geopolymer composites // Composites Part B: Engineering. 2019. No. 164. Рр. 747–757. doi: 10.1016/j.compositesb.2019.01.092
  14. Thakur Nisha, Saklecha P.P. Comparison of pro-perties of steel slag and natural aggregate for road construction. 2019. URL: https://ssrn.com/abstract=3376488 doi: 10.2139/ssrn.3376488
  15. Li Chuangmin, Liu Qiandong, Ding Xikun, Liu Lubiao, Li Minggu, Li Huihui et al. Large-size macadam mixture stabilized with industrial solid waste fly ash and slag powder: A new mixture to improve the performance of pavement base material. URL: https://ssrn.com/abstract=4697933 doi: 10.2139/ssrn.4697933
  16. Черникова И.И., Кострикина Т.В., Тюмнева К.В., Ермолаева Т.Н. Применение стандартных образцов доменных, сталеплавильных, конверторных шлаков и сварочных плавленых флюсов при разработке методики анализа шлакообразующих смесей методом атомно-эмиссионной спектрометрии с индуктивно связанной плазмой // Стандартные образцы. 2017. № 3–4. С. 29–40. doi: 10.20915/2077-1177-2017-13-3-4-29-40. EDN USNGNX.
  17. Zalnezhad M., Hesami E. Effect of steel slag aggregate and bitumen emulsion types on the performance of microsurfacing mixture // Journal of Traffic and Transportation Engineering. 2020. No. 7. Рр. 215–226. doi: 10.1016/j.jtte.2018.12.005
  18. Смирнов Д.С., Мавлиев Л.Ф., Хузиахметова К.Р., Мотыйгуллин И.Р. Влияние минеральной добавки на основе молотого доменного шлака на свойства бетонов и бетонных смесей // Известия КГАСУ. 2022. № 4 (62). С. 61–69. doi: 10.52409/20731523_2022_4_61
  19. Behiry A.E.A.E.M. Evaluation of steel slag and crushed limestone mixtures as subbase material in flexible pavement // Ain Shams Engineering Journal. 2013. Vol. 4. No. 1. Рр. 43–53. doi: 10.1016/j.asej.2012.07.006
  20. Papayianni I., Anastasiou E. Effect of granulometry on cementitious properties of ladle furnace slag // Cement and Concrete Composites. 2012. No. 34. Рр. 400–407. doi: 10.1016/j.cemconcomp.2011.11.015
  21. Li J., Cao S., Yilmaz E. Characterization of macro mechanical properties and microstructures of cement-based composites prepared from fly ash, gypsum and steel slag // Minerals. 2022. No. 12. Р. 6. doi: 10.3390/min12010006
  22. Yüksel I., Bilir T., Ozkan Ö. Durability of concrete incorporating non-ground blast furnace slag and bottom ash as fine aggregate // Building & Environment. 2007. No. 42 (7). Рр. 2651–2659. doi: 10.1016/j.buildenv.2006.07.003

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».