The role of heat transfer resistance of a window in formation of resulting temperature at the boundary of habitable space in a room
- Authors: Malyavina E.G.1, Landyrev S.S.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 19, No 7 (2024)
- Pages: 1161-1172
- Section: Engineering systems in construction
- URL: https://journals.rcsi.science/1997-0935/article/view/266673
- ID: 266673
Cite item
Full Text
Abstract
Introduction. According to current regulations, values of required heat transfer resistance of external enclosing structures must comply with the purpose of a building, a structure itself and the number of degree days in a heating period. This technique applies to all external enclosing structures, including windows. However, windows have greatly lower heat transfer resistance than solid envelopes. Therefore, windows have a greater effect on temperature than solid envelopes at the boundary of habitable space in a room.Materials and methods. The resulting temperature at the boundary of habitable space is lowest when outdoor temperature is lowest, or when temperature is lowest for five days in a raw. It has been found out that during such periods standards of resulting temperature are not met. A regression curve, made using the least squares method, is presented; it describes the relationship between t592 and the heating season degree-day (HSDD) for nursery and junior groups of preschool institutions in 30 cities of the Russian Federation. Some points are below the trendline. It is for such cities that it is proposed to take into account not only the HSDD, but also t592 when standards are set for resistance of windows to heat transfer.Results. Resulting temperatures at the boundary of habitable space in a room are determined. They show that optimal requirements for resulting temperature are never met, while acceptable requirements are met for all values of heat transfer resistance of windows and exterior walls, even if resistance to heat transfer is normalized. As for the local asymmetry of resulting temperature, its standards are also met at all times. Values of resistance of windows to heat transfer are calculated to find those that correspond to optimal resulting temperatures at the boundary of habitable areas of rooms for nursery and junior groups at preschool institutions if basic values of resistance of exterior walls to heat transfer remain unchanged. In a large number of cases, values of resistance of windows to heat transfer greatly exceed the maximum value set by Construction Regulations 50.13330.Conclusions. If the choice of a large value of window width is only explained by aesthetic reasons, the window’s resistance to heat transfer must exceed 0.8 m2∙°С/W, despite higher costs of such windows.
About the authors
E. G. Malyavina
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: emal@list.ru
ORCID iD: 0000-0002-5832-8530
S. S. Landyrev
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: lanserser@mail.ru
ORCID iD: 0000-0001-9302-907X
References
- Борисов К.Б. О новых требованиях энергоэффективности зданий. Проект приказа Минстроя России. Ч. 1. Положительные и отрицательные аспекты // Энергосбережение. 2022. № 7. С. 36–41. EDN GXWULG.
- Горшков А.С. Теплотехнические характеристики ограждающих конструкций зданий. Ч. 2. Российские принципы нормирования // Энергосбережение. 2017. № 8. С. 33–39. EDN ZUGGLV.
- Генералова Е.М. Роль фасадных систем в борьбе за энергоэффективность // АВОК: Вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика. 2017. № 8. C. 48–53. EDN ZVHVQJ.
- Окунев А.Ю. Оптимизация утепления наружных стен на примере частных жилых домов // Вестник Томского государственного архитектурно-строительного университета. 2019. Т. 21. № 1. С. 126–139. doi: 10.31675/1607-1859-2019-21-1-126-139. EDN VUHEQK.
- Yelisetti S., Saini V.K., Kumar R., Lamba R., Saxena A. Optimal energy management system for residential buildings considering the time of use price with swarm intelligence algorithms // Journal of Building Engineering. 2022. Vol. 59. P. 105062. doi: 10.1016/j.jobe.2022.105062
- Lu J., Xue Y., Wang Z., Fan Y. Optimized mitigation of heat loss by avoiding wall-to-floor thermal bridges in reinforced concrete buildings // Journal of Building Engineering. 2020. Vol. 30. P. 101214. doi: 10.1016/j.jobe.2020.101214
- Кочев А.Г., Соколов М.М., Кочева Е.А., Федотов A.A. Практическое использование альтернативных энергетических ресурсов в православных храмах // Известия высших учебных заведений. Строительство. 2019. № 7 (727). С. 78–85. doi: 10.32683/0536-1052-2019-727-7-78-85. EDN PGDICY.
- Старкова Л.Г., Морева Ю.А., Новоселова Ю.Н. Оптимизация микроклимата в православном храме методом числового моделирования воздушных потоков // Вестник Южно-Уральского государственного университета. Серия: Строительство и архитектура. 2018. Т. 18. № 3. С. 53–59. doi: 10.14529/build180308. EDN XYKLOX.
- Karpenko A.V., Petrova I.Yu. The conceptual model of neuro-fuzzy regulation of the microclimate in the room // IFAC-PapersOnLine. 2018. Vol. 51. Issue 30. Pp. 636–640. doi: 10.1016/j.ifacol.2018.11.229
- Teitelbaum E., Meggers F. Expanded psychrometric landscapes for radiant cooling and natural ventilation system design and optimization // Energy Procedia. 2017. Vol. 122. Pp. 1129–1134. doi: 10.1016/j.egypro.2017.07.436
- Malz S., Steininger P., Dawoud B., Krenkel W., Steffens O. On the development of a building insulation using air layers with highly reflective interfaces // Energy and Buildings. 2021. Vol. 236. P. 110779. doi: 10.1016/j.enbuild.2021.110779
- Малявина Е.Г., Ландырев С.С. Зависимость параметров микроклимата на границе обслуживаемой зоны помещения от размеров окна // Жилищное строительство. 2022. № 8. С. 44–52. doi: 10.31659/0044-4472-2022-8-44-52. EDN DXSVPP.
- Санкина Ю.Н., Рябова Т.В., Сулин А.Б., Деими-Даштбаяз М., Лысёв В.И. Обоснование параметра результирующей комфортной температуры // Вестник Международной академии холода. 2021. № 1. С. 28–33. doi: 10.17586/1606-4313-2021-20-1-28-33. EDN AQIQIY.
- De Luca F., Naboni E., Lobaccaro G. Tall buildings cluster form rationalization in a Nordic climate by factoring in indoor-outdoor comfort and energy // Energy and Buildings. 2021. Vol. 238. P. 110831. doi: 10.1016/j.enbuild.2021.110831
- Teitelbaum E., Meggers F. Expanded psychrometric landscapes for radiant cooling and natural ventilation system design and optimization // Energy Procedia. 2017. Vol. 122. Pp. 1129–1134. doi: 10.1016/j.egypro.2017.07.436
- Cannistraro M., Trancossi M. Enhancement of indoor comfort in the presence of large glazed radiant surfaces by a local heat pump system based on Peltier cells // Thermal Science and Engineering Progress. 2019. Vol. 14. P. 100388. doi: 10.1016/j.tsep.2019.100388
- Zhang S., Zhu N., Lv S. Human response and productivity in hot environments with directed thermal radiation // Building and Environment. 2021. Vol. 187. P. 107408. doi: 10.1016/j.buildenv.2020.107408
- Forouzandeh A. Prediction of surface temperature of building surrounding envelopes using holistic microclimate ENVI-met model // Sustainable Cities and Society. 2021. Vol. 70. P. 102878. doi: 10.1016/j.scs.2021.102878
- Frolova A.A., Landyrev S.S. Microclimate parameters evaluation for spaces with windows of different thermal protection // Light & Engineering. 2021. Vol. 29. Issue 5. Pp. 61–67. doi: 10.33383/2021-078
- Zhang L., Yu X., Lv Q., Cao F., Wang X. Study of transient indoor temperature for a HVAC room using a modified CFD method // Energy Procedia. 2019. Vol. 160. Pp. 420–427. doi: 10.1016/j.egypro.2019.02.176
Supplementary files
