The efficiency of the seismic isolating sliding belt under the impact of the most unfavourable earthquake accelerograms
- Authors: Mkrtychev O.V.1, Mingazova S.R.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 19, No 7 (2024)
- Pages: 1104-1115
- Section: Construction system design and layout planning. Construction mechanics. Bases and foundations, underground structures
- URL: https://journals.rcsi.science/1997-0935/article/view/266668
- ID: 266668
Cite item
Full Text
Abstract
Introduction. Research was carried out on the performance of monolithic reinforced concrete buildings of varying heights with and without a seismic isolating sliding belt when subjected to the most unfavourable earthquake accelerograms. The objective of the study is to assess the effectiveness of seismic isolation in the form of a sliding belt at the foundation level under the action of the most unfavourable earthquake accelerograms using a direct nonlinear dynamic method.Materials and methods. The study employed a direct dynamic method based on an explicit integration scheme of the equation of motion (the central difference method). To determine the most unfavourable earthquake accelerograms, a method was used that accounted for all the most significant natural frequencies of the building under consideration.Results. Based on the calculations conducted, relative displacements and stress intensities for the building as a whole and in detail for the most loaded floor were determined. The analysis of the obtained results showed a significant reduction in shear displacements and stress intensities with the use of seismic isolation in the form of a sliding belt at the foundation level.Conclusions. When selecting the type of seismic isolation, its cost, as well as the labour intensity of manufacturing and installation, must be considered. It is necessary for the seismic isolation systems used to be available for mass construction, less complex, and maximally effective. Proven materials and technologies for the installation of these systems, which do not require specific skills and qualifications, should be used. Seismic isolation should provide comprehensive protection against the most likely seismic impacts. Conducted research shows that the seismic isolating sliding belt meets the above requirements. Unlike widely used rubber-metallic and pendulum sliding bearings, seismic isolation in the form of a sliding belt at the foundation level does not require factory manufacturing and can be implemented directly at the construction site.
About the authors
O. V. Mkrtychev
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: MkrtychevOV@mgsu.ru
ORCID iD: 0000-0002-2828-3693
SPIN-code: 9676-4986
S. R. Mingazova
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: salima.mingazova@yandex.ru
SPIN-code: 7506-5852
References
- Арутюнян Л.М. Оценка надежности железобетонных зданий с сейсмоизолирующим фундаментом с маятниковыми скользящими опорами : дис. ... канд. тех. наук. М., 2017. 141 с. EDN FHKTSY.
- Dushimimana A., Dushimimana C., Mbereyaho L., Niyonsenga A.A. Effects of building height and seismic load on the optimal performance of base isolation system // Arabian Journal for Science and Engineering. 2023. Vol. 48. Issue 10. Pp. 13283–13302. doi: 10.1007/s13369-023-07660-9
- Уздин А.М., Мозжухин А.С., Сорокина Г.В. Некоторые вопросы нелинейной работы сейсмоизоляции // Сейсмостойкое строительство. Безопасность сооружений. 2022. № 3. С. 8–19. doi: 10.37153/2618-9283-2022-3-8-19. EDN DIOUWZ.
- Patil A.Y., Patil R.D. A review on seismic analysis of a multi-storied steel building provided with different types of damper and base isolation // Asian Journal of Civil Engineering. 2024. Vol. 25. Issue 4. Pp. 3277–3283. doi: 10.1007/s42107-023-00978-7
- Sezer Y.M., Diambra A., Ge B., Dietz M., Alexander N.A., Sextos A.G. Experimental determination of friction at the interface of a sand-based, seismically isolated foundation // Acta Mechanica. 2023. Vol. 235. Issue 3. Pp. 1649–1667. doi: 10.1007/s00707-023-03802-0
- Asaad R., Kaadan A. Retrofitting existing masonry structures by using seismic base isolation system // Arabian Journal for Science and Engineering. 2023. Vol. 49. Issue 4. Pp. 5243–5254. doi: 10.1007/s13369-023-08381-9
- Calvi P.M., Ruggiero D.M. Numerical modelling of variable friction sliding base isolators // Bulletin of Earthquake Engineering. 2015. Vol. 14. Issue 2. Pp. 549–568. doi: 10.1007/s10518-015-9834-y
- Khoshnudian F., Motamedi D. Seismic response of asymmetric steel isolated structures considering vertical component of earthquakes // KSCE Journal of Civil Engineering. 2013. Vol. 17. Issue 6. Pp. 1333–1347. doi: 10.1007/s12205-013-0115-5
- Уздин А.М., Сандович Т.А., Самих Амин Аль-Насер-Мохомад. Основы теории сейсмостойкости и сейсмостойкого строительства зданий и сооружений. СПб. : Издательство ВНИИГ, 1993. 175 с.
- Поляков В.С., Килимник Л.Ш., Черкашин А.В. Современные методы сейсмозащиты зданий. М. : Стройиздат, 1989. 318 с.
- Айзенберг Я.М. Простейшая сейсмоизоляция. Колонны нижних этажей как элемент сейсмоизоляции здания // Сейсмостойкое строительство. Безопасность сооружений. 2004. № 1. С. 28–32. EDN HXDEUA.
- Айзенберг Я.М. Сооружения с выключающимися связями для сейсмических районов. М. : Стройиздат, 1976. 232 с.
- Мкртычев О.В., Арутюнян Л.М. Исследование работы сейсмоизолирующей маятниковой скользящей опоры при периодическом воздействии // Сейсмостойкое строительство. Безопасность сооружений. 2016. № 4. С. 38–43. EDN WHCVJD.
- Мкртычев О.В., Бунов А.А. Сравнительный анализ работы сейсмоизоляции зданий в виде резинометаллических опор на двухкомпонентную акселерограмму // Наука и образование в современной конкурентной среде : мат. Междунар. науч.-практ. конф. 2014. С. 117–123.
- Мкртычев О.В., Решетов А.А. Сейсмические нагрузки при расчете зданий и сооружений : монография. М. : Изд-во АСВ, 2017. 140 с.
- Mkrtychev O., Mingazova S. Analysis of the reaction of reinforced concrete buildings with a varying number of stories with a seismic isolation sliding belt to an earthquake // IOP Conference Series : materials Science and Engineering. 2020. Vol. 869. Issue 5. P. 052065. doi: 10.1088/1757-899x/869/5/052065
- Mkrtychev O., Mingazova S. Numerical analysis of antiseismic sliding belt performance // International Journal for Computational Civil and Structural Engineering. 2023. Vol. 19. Issue 2. Pp. 161–171. doi: 10.22337/2587-9618-2023-19-2-161-171
- Абрамов Б.М., Абрамов А.Б. Динамический гаситель колебаний, вызываемых периодическими ударами // Механика машин. 1969. № 20. С. 103–117.
- Алексеев А.М. О демпфировании колебаний импульсно-динамическим гасителем // Проблемы прочности. 1972. № 2. С. 52–54.
- Васюнкин А.Н., Бобров Ф.В. Экспериментальные исследования зданий на опорах в форме эллипсоидов вращения // Сейсмостойкое строительство. 1976. Т. 14. № 4. С. 20–24.
- Савинов О.А., Сандович Т.А. О некоторых особенностях применения системы сейсмоизоляции зданий и сооружений // Известия ВНИИГ им. Б.Е. Веденеева. 1978. Т. 212. С. 26–39.
- Черепинский Ю.Д. К сейсмостойкости зданий на кинематических опорах // Основания, фундаменты и механика грунтов. 1972. № 3. С. 13–15.
- Чуднецов В.П., Солдатова Л.Л. Здания с сейсмоизоляционным скользящим поясом и упругими ограничителями перемещений // Сейсмостойкое строительство. 1979. Т. 14. № 5. С. 1–3.
- Кузнецов В.Д., Чэнь С. Скользящий пояс с фторопластом сейсмостойкого здания // Инженерно-строительный журнал. 2011. № 3 (21). С. 53–58. EDN NTLXRV.
- Nishia T., Murotab N. Elastomeric seismic-protection isolators for buildings and bridges // Chinese Journal of Polymer Science. 2013. Vol. 31. Issue 1. Pp. 50−57. doi: 10.1007/s10118-013-1217-8
- Pan P., Ye L., Shi W., Cao H. Engineering practice of seismic isolation and energy dissipation structures in China // Science China Technological Sciences. 2012. Vol. 55. Issue 11. Pp. 3036–3046. doi: 10.1007/s11431-012-4922-6
- Zhou F., Tan P. Recent progress and application on seismic isolation energy dissipation and control for structures in China // Earthquake Engineering and Engineering Vibration. 2018. Vol. 17. Issue 1. Pp. 19–27. doi: 10.1007/s11803-018-0422-4
- Leblouba M. Selection of seismic isolation system parameters for the near-optimal design of structures // Scientific Reports. 2022. Vol. 12. Issue 1. doi: 10.1038/s41598-022-19114-7
- Mirzaev I., Yuvmitov A., Turdiev M., Shomurodov J. Influence of the vertical earthquake component on the shear vibration of buildings on sliding foundations // E3S Web of Conferences. 2021. Vol. 264. P. 02022. doi: 10.1051/e3sconf/202126402022
- Ahmad N., Shakeel H., Masoudi M. Design and development of low-cost HDRBs seismic isolation of structures // Bulletin of Earthquake Engineering. 2020. Vol. 18. Issue 3. Pp. 1107–1138. doi: 10.1007/s10518-019-00742-w
- Ras A., Hamdaoui K. Effect of friction pendulum bearing on metallic buildings behaviour subjected to horizontal ground motions // Asian Journal of Civil Engineering. 2023. Vol. 24. Issue 7. Pp. 2065–2075. doi: 10.1007/s42107-023-00626-0
- Hassan W.M. Assessment of ASCE 7–16 seismic isolation bearing torsional displacement // International Journal of Civil Engineering. 2020. Vol. 18. Issue 3. Pp. 351–366. doi: 10.1007/s40999-019-00462-x
- Xu W., Du D., Wang S., Liu W., Li W. Shaking table tests on the multi-dimensional seismic response of long-span grid structure with base-isolation // Engi-neering Structures. 2019. Vol. 201. P. 109802. doi: 10.1016/j.engstruct.2019.109802
Supplementary files
