Advanced technique for flexible cable analysis
- Authors: Chesnokov A.V.1, Mikhailov V.V.1
-
Affiliations:
- Lipetsk State Technical University (LSTU)
- Issue: Vol 19, No 7 (2024)
- Pages: 1091-1103
- Section: Construction system design and layout planning. Construction mechanics. Bases and foundations, underground structures
- URL: https://journals.rcsi.science/1997-0935/article/view/266667
- ID: 266667
Cite item
Full Text
Abstract
Introduction. Cable structures belong to perspective roof systems. Specialized software packages for structural analysis, however, do not provide optimization tools for obtaining efficient design solutions of the cable structures. Thus, development of improved methods for design and analysis of cable systems is an important task to be solved. An advanced technique for flexible cable analysis is proposed. It includes ordinary operations of summing the coefficients and their products. The technique is applicable for non-commercial mathematical software packages with numerical simulation tools included, thus providing structural optimization capabilities.Materials and methods. The technique proposed is based on the sine-series expansion of the external load and the shape function of the flexible cable. The differential equation of cable equilibrium is thus transformed into the set of algebraic equations. The cable length is expressed in algebraic form by means of the power expressions for the sum of the series.Results. The equation for the flexible cable is derived. It includes cable ordinate, axial stiffness, relative elongation and the external load parameters. The technique for determination of the axial stiffness of the cable is proposed under the operability conditions. The techniques for finding load-induced vertical displacements, as well as the initial cable sag and the undeformed length are given. The length of the cable under load and the ordinate given the cable length are proposed.Conclusions. The technique for flexible cable analysis allows taking into account distributed transverse external loads. For a combined load the coefficients of the series are the sum of the particular load coefficients. The technique is intended for automated structural solution. It allows facilitating the preliminary design stage, thus providing optimal parameters determination and in-depth design study implementation. Further development of the proposed technique encompasses the fields of non-shallow cable analysis, multy-chord cable systems, cable structures with stiffening girders, strutted cable systems and spatial roof structures.
About the authors
A. V. Chesnokov
Lipetsk State Technical University (LSTU)
Email: andreychess742@mail.ru
ORCID iD: 0000-0003-3687-0510
V. V. Mikhailov
Lipetsk State Technical University (LSTU)
Email: mmvv46@rambler.ru
ORCID iD: 0000-0001-8274-9346
References
- Энгель Х. Несущие системы / пер. с нем. Л.А. Андреевой. М. : АСТ Астрель, 2007. 344 с.
- Zhang Z., Dong S., Fu X. Structural design of lotus arena: a large-span suspen-dome roof // International Journal of Space Structures. 2009. Vol. 24. Issue 3. Pp. 129–142. doi: 10.1260/026635109789867634
- Еремеев П.Г. Висячие конструкции // Строительные материалы. 2022. № 10. С. 62–67. doi: 10.31659/0585-430X-2022-807-10-62-67. EDN HOJHSN.
- Ибрагимов А.М., Гнедина Л.Ю., Долгушева В.В. Проблемы применения и проектирования арочных комбинированных систем // Вестник Поволжского государственного технологического университета. Серия: Материалы. Конструкции. Технологии. 2021. № 2. С. 25–35. doi: 10.25686/2542-114X.2021.2.25. EDN PKRRXZ.
- Еремеев П.Г., Киселев Д.Б. Современные арочно-вантовые комбинированные конструкции // Монтажные и специальные работы в строительстве. 2005. № 9. С. 11–16. EDN YPOPTI.
- Llorens J. Detailing masts // Proceedings of the IASS Annual Symposium. Structural membranes 2019. 2019. Pp. 359–366.
- Arellano H., Gomez R., Tolentino D. Parametric analysis of multi-span cable-stayed bridges under alternate loads // The Baltic Journal of Road and Bridge Engineering. 2019. Vol. 14. Issue 4. Pp. 543–567. doi: 10.7250/bjrbe.2019-14.457
- Al-Rousan R. The impact of cable spacing on the behavior of cable-stayed bridges // Magazine of Civil Engineering. 2019. No. 7 (91). Pp. 49–59. doi: 10.18720/MCE.91.5. EDN YJWAIV.
- Mushchanov V., Protopopov I., Korsun O., Garifullin M. Definition of the rational geometry of the cable-beam cover over stadium tribunes // Procedia Engineering. 2015. Vol. 117. Pp. 1001–1012. doi: 10.1016/j.proeng.2015.08.209
- Yan X., Yang Y., Chen Z., Ma Q. Mechanical properties of a hybrid cable dome under non-uniform snow distribution // Journal of Constructional Steel Research. 2019. Vol. 153. Pp. 519–532. doi: 10.1016/j.jcsr.2018.10.022
- Xue Y., Luo Y., Wang Y., Xu X., Wan H.P. et al. A new configuration of Geiger-type cable domes with sliding ridge cables: Computational framework and structural feasibility investigation // Engineering Structures. 2023. Vol. 286. P. 116028. doi: 10.1016/j.engstruct.2023.116028
- Krishnan S. Structural design and behavior of prestressed cable domes // Engineering Structures. 2020. Vol. 209. P. 110294. doi: 10.1016/j.engstruct.2020.110294
- Lienhard J., Alpermann H., Gengnagel C., Knippers J. Active bending, a review on structures where bending is used as a self-formation process // International Journal of Space Structures. 2013. Vol. 28. Issue 3–4. Pp. 187–196. doi: 10.1260/0266-3511.28.3-4.187
- Mazzola C., Stimpfle B., Zanelli A., Canobbio R. TemporActive Pavilion: first loop of design and prototyping of an ultra-lightweight temporary architecture // Proceedings of the TensiNet Symposium. 2019. Pp. 390–401.
- Еремеев П.Г. Металлические комбинированные конструкции покрытий // Вестник НИЦ Строительство. 2019. № 2 (21). С. 30–40. EDN XGKKKL.
- Ситников И.Р., Голиков А.В. Регулирование усилий в большепролетных конструкциях при разработке рациональной конструктивной формы здания дельфинария в Волгограде // Строительная механика инженерных конструкций и сооружений. 2018. Т. 14. № 4. С. 278–292. doi: 10.22363/1815-5235-2018-14-4-278-292. EDN XXRMGL.
- Окунева М.А., Сахарова Д.В., Хазов П.А. Самосогласованная система «несущие конструкции — упругое основание» с применением предварительно напряженных вантовых элементов // Приволжский научный журнал. 2022. № 1 (61). С. 81–87. EDN OLITFZ.
- Еремеев П.Г. Вантовая комбинированная конструктивная система «Тенсегрити» // Промышленное и гражданское строительство. 2021. № 1. С. 21–27. doi: 10.33622/0869-7019.2021.01.21-27. EDN XVAVUG.
- Zhao Y., Guo J., Jiang Z., Chen W., Zhou G. Control method for determining feasible pre-stresses of cable-struts structure // Thin-Walled Structures. 2022. Vol. 174. P. 109159. doi: 10.1016/j.tws.2022.109159
- Еремеев П.Г. Тентовые мембраны для ограждающих конструкций покрытий над трибунами стадионов // Промышленное и гражданское строительство. 2015. № 4. С. 33–36. EDN TPXBCT.
- Wagner R. Simplified design tools for single/double curved membranes and inflated cushions // International Journal of Space Structures. 2008. Vol. 23. Issue 4. Pp. 233–241. doi: 10.1260/026635108786959843
- Borgart A. An approximate calculation method for air inflated cushion structures for design purposes // International Journal of Space Structures. 2010. Vol. 25. Issue 2. Pp. 83–91. doi: 10.1260/0266-3511.25.2.83
- Краснощеков Ю.В., Макеев С.А., Красотина Л.В. Применение схемы гибкой нити для расчета перекрытий при аварийном отказе колонны связевого каркаса // Научный журнал строительства и архитектуры. 2017. № 4 (48). С. 11–20. EDN ZVZSUP.
- Xue S., Li X., Liu Y. Advanced form finding of cable roof structures integral with supporting frames: numerical methods and case studies // Journal of Building Engineering. 2022. Vol. 60. P. 105204. doi: 10.1016/j.jobe.2022.105204
- Nie R., He B., Hodges D.H., Ma X. Form finding and design optimization of cable network structures with flexible frames // Computers & Structures. 2019. Vol. 220. Pp. 81–91. doi: 10.1016/j.compstruc.2019.05.004
- Chen S., Yang M., Meng D., Hu S. Theoretical solution for multi-span continuous cable structures considering sliding // International Journal of Solids and Structures. 2020. Vol. 207. Pp. 42–54. doi: 10.1016/j.ijsolstr.2020.09.024
- Yuan P., He B., Nie R., Zhang L., Yu H., Wang W. et al. Member importance prediction and failure response analysis for cable network antennas // Engineering Structures. 2022. Vol. 266. P. 114642. doi: 10.1016/j.engstruct.2022.114642
- Freire A.M.S., Negrao J.H.O., Lopes A.V. Geometrical nonlinearities on the static analysis of highly flexible steel cable-stayed bridges // Computers & Structures. 2006. Vol. 84. Issue 31–32. Pp. 2128–2140. doi: 10.1016/j.compstruc.2006.08.047
- Chunjiang W., Renpeng W., Shilin D., Ruojun Q. A new catenary cable element // International Journal of Space Structures. 2003. Vol. 18. Issue 4. Pp. 269–275. doi: 10.1260/026635103322987986
- Costa R.S., Lavall A.C.C., Lanna da Silva R.G., Porcino dos Santos A., Viana H.F. Cable structures: An exact geometric analysis using catenary curve and considering the material nonlinearity and temperature effect // Engineering Structures. 2022. Vol. 253. P. 113738. doi: 10.1016/j.engstruct.2021.113738
- Abad M.S.A., Shooshtari A., Esmaeili V., Ria-bi A.N. Nonlinear analysis of cable structures under general loadings // Finite Elements in Analysis and Design. 2013. Vol. 73. Pp. 11–19. doi: 10.1016/j.finel.2013.05.002
- Ma S., Yuan X.F., Deng M., Yang L. Minimal mass design of a new cable truss in two states // Mechanics Research Communications. 2022. Vol. 125. P. 103995. doi: 10.1016/j.mechrescom.2022.103995
- Greco L., Impollonia N., Cuomo M. A procedure for the static analysis of cable structures following elastic catenary theory // International Journal of Solids and Structures. 2014. Vol. 51. Issue 7–8. Pp. 1521–1533. doi: 10.1016/j.ijsolstr.2014.01.001
- Wagner R. Bauen mit seilen und membranen. Berlin : Beuth Verlag GmbH, 2016. 517 p.
- Huang Y., Lan W. Static analysis of cable structure // Applied Mathematics and Mechanics. 2006. Vol. 27. Issue 10. Pp. 1425–1430. doi: 10.1007/s10483-006-1015-y
- Kmet S., Kokorudova Z. Non-linear closed-form computational model of cable trusses // International Journal of Non-Linear Mechanics. 2009. Vol. 44. Issue 7. Pp. 735–744. doi: 10.1016/j.ijnonlinmec.2009.03.004
- Москалев Н.С. Конструкции висячих покрытий. М. : Стройиздат, 1980. 336 с.
- Турусов Р.А., Андреев В.И., Цыбин Н.Ю. Общее решение задачи об изгибе многослойной балки в рядах Фурье // Строительная механика инженерных конструкций и сооружений. 2017. № 4. С. 34–42. doi: 10.22363/1815-5235-2017-4-34-42. EDN ZHAIYZ.
- Чернышов А.Д., Горяйнов В.В., Кузнецов С.Ф., Никифорова О.Ю. Применение быстрых разложений для построения точных решений задачи о прогибе прямоугольной мембраны под действием переменной нагрузки // Вестник Томского государственного университета. Математика и механика. 2021. № 70. С. 127–142. doi: 10.17223/19988621/70/11. EDN REGKRY.
- Yessenbayeva G.A., Akhanov F.M., Makazhanova T.Kh. On the calculation of rectangular plates by the trigonometric series // Bulletin of the Karaganda University. Mathematics Series. 2019. Vol. 94. Issue 2. Pp. 115–120. doi: 10.31489/2019M2/115-120
- Shah N.D., Shah D.A., Desai J.A., Patil H.S. Analysis of long span suspension bridges using series method // International Journal of Advanced Engineering Technology. 2010. Vol. 1. Issue 1. Pp. 84–94.
- Tolstov G.P. Fourier series. Dover Publications, 2012. 352 p.
- Дмитриев Л.Г., Касилов А.В. Вантовые покрытия (расчет и конструирование). Киев : Будiвельник, 1974. 271 с.
Supplementary files
