Analytical determination of the stress-strain state of soil mass during tunnelling

Cover Page

Cite item

Full Text

Abstract

Introduction. One of the effective approaches to assessing the impact of tunnel construction works involves a comprehensive approach to problem-solving, including determination of the face-support pressure to ensure the stability of the tunnel face and assessment of additional surface movements that occur during tunnel construction. This approach is justified by the fact that actual displacements can be close to predicted ones when the optimal face-support pressure is selected and there is no face loss of soil, which could lead to unforeseen deformations. However, it should be noted that the method for calculating pressure presented in the current standard is a preliminary forecast and requires constant adjustment of the pressure during tunnel construction works.Materials and methods. In this work, the authors adapted Melan’s problem formulation with a horizontal load parallel to the surface to assess the change in the stress-strain state of the soil mass before tunnel face excavation due to the application of the face-support pressure. The problem formulation corresponds to the stage of work preparation before excavation of the soil for the installation of a precast concrete lining ring into its design position.Results. Based on the analytical equations formulated in the MathCAD software environment, isopoles of vertical and horizontal stresses, and vertical deformations were created. The obtained isopoles were compared with isopoles generated in the Plaxis 2D software using similar parameters to validate the results. Additionally, isopoles of the soil mass under the influence of the face-support pressure, considering self-weight stresses, were obtained to establish a more realistic stress-strain state of the mass in which a tunnel is being constructed.Conclusions. The analysis of the research results has shown that the isopoles are quantitatively and qualitatively similar to each other. The method proposed by the authors can be adapted with appropriate modifications to adjust the face-support pressure during construction, which is necessary both to ensure the stability of the tunnel face during construction and to minimize the impact of the face-support pressure on the ground surface.

About the authors

A. Z. Ter-Martirosyan

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: gic-mgsu@mail.ru
ORCID iD: 0000-0001-8787-826X

V. V. Rud

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: victoriadll@yandex.ru
ORCID iD: 0000-0003-0596-336X

References

  1. Мазеин С.В., Вознесенский А.С. Опыт тоннельной щитовой проходки с гидропригрузом // Метро и тоннели. 2019. № 1. C. 14–17. EDN PPYGWR.
  2. Протосеня А.Г., Беляков Н.А., Тхай Д.Н. Разработка метода прогноза давления пригруза забоя и осадок земной поверхности при строительстве тоннелей механизированными проходческими комплексами // Записки Горного института. 2015. Т. 211. С. 53–63. EDN TQMGPV.
  3. Протодьяконов M.М. Давление горных пород на рудничную крепь // Горный журнал. 1907.
  4. Ter-Martirosyan A.Z., Cherkesov R.H., Isaev I.O., Shishkina V.V. Surface settlement during tunneling: field observation analysis // Applied Sciences. 2022. Vol. 12. Issue 19. P. 9963. doi: 10.3390/app121-99963
  5. Тер-Мартиросян А.З., Черкесов Р.Х., Исаев И.О., Рудь В.В. Фактическое значение коэффициента перебора для тоннелей в дисперсных и скальных грунтах // Жилищное строительство. 2023. № 9. C. 61–73. doi: 10.31659/0044-4472-2023-9-61-73. EDN UBBWQA.
  6. Horn N. Horizontal earth pressure on perpen-dicular tunnel face // Proceedings of the Hungarian National Conference of the Foundation Engineer Industry. 1961.
  7. Janssen H.A. Versuche tiber Getreidedruck in Silozellen // Zeitschrift des Vereins deutscher lngenieure. 1895. Vol. 35. Pp. 1045–1049.
  8. Фрид М. Результаты опытов давления зерна на дно и стены глубоких сосудов // Мукомольно-пищевая промышленность. 1890. С. 921–933.
  9. Anagnostou G., Kovari K. Face stability conditions with earth-pressure-balanced shields // Tunnelling and Underground Space Technology. 1996. Vol. 11. Issue 2. Pp. 165–173. doi: 10.1016/0886-7798(96)00017-x
  10. Anagnostou G. The contribution of horizontal arching to tunnel face stability // Geotechnik. 2012. Vol. 35. Issue 1. Pp. 34–44. doi: 10.1002/gete.201100024
  11. Leca E., Dormieux L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material // Géotechnique. 1990. Vol. 40. Issue 4. Pp. 581–606. doi: 10.1680/geot.1990.40.4.581
  12. Yuan S., Feng D., Zhang S., Xing Y., Ke Z. Stability analysis of shield tunnel face considering spatial variability of hydraulic parameters // Rock and Soil Mechanics. 2022. Vol. 43. Issue 11. Pp. 3153–3162. doi: 10.16285/j.rsm.2021.2200
  13. Chang Y., Cao P., Zhang J., Fan Z., Xie W., Liu Z. et al. Face stability of tunnel in multi-stratum: limit analysis and numerical simulation // Geotechnical and Geological Engineering. 2023. Vol. 41. Issue 5. Pp. 3203–3215. doi: 10.1007/s10706-023-02453-1
  14. Wang W., Liu H., Deng R., Wang Y. Active stability analysis of 3D tunnel face in nonhomogeneous and anisotropic soils // Geotechnical and Geological Engineering. 2023. Vol. 41. Issue 5. Pp. 3013–3033. doi: 10.1007/s10706-023-02442-4
  15. Melan E. Der Spannungszustand der durch eine Einzelkraft im Innern beanspruchten Halbscheibe // ZAMM — Journal of Applied Mathematics and Mechanics. Zeitschrift für Angewandte Mathematik und Mechanik. 1932. Vol. 12. Issue 6. Pp. 343–346. doi: 10.1002/zamm.19320120603
  16. Airy G.B. On the strains in the interior of beams // Proceedings of the Royal Society of London. 1863. Vol. 12. Pp. 304–306. doi: 10.1098/rspl.1862.0068
  17. Hanna A.M., Hadid W.H. New models for shallow foundations // Mathematical Modelling. 1987. Vol. 9. Issue 11. Pp. 799–811. doi: 10.1016/0270-0255(87)90500-8
  18. Тер-Мартиросян А.З., Тер-Мартиросян З.Г., Лузин И.Н. Напряженно-деформированное состояние оснований фундаментов глубокого заложения // Вестник Пермского национального исследовательского политехнического университета. Строительство и архитектура. 2017. Т. 8. № 2. С. 96–103. doi: 10.15593/2224-9826/2017.2.09. EDN YYZKHJ.
  19. Ter-Martirosyan Z.G., Vanina Y.V. Impact of a deep foundation on enclosing wall structure of excavation // Journal of Physics: Conference Series. 2021. Vol. 1928. Issue 1. P. 012004. doi: 10.1088/1742-6596/1928/1/012004
  20. Hu Q. Retaining structure force-deformation analysis model for an ultradeep foundation pit // Mathematical Problems in Engineering. 2013. Vol. 2013. Pp. 1–18. doi: 10.1155/2013/549491
  21. Зерцалов М.Г., Казаченко С.А. Численно-аналитический метод инженерной оценки влияния разработки котлована на перемещения прилегающего к нему грунтового массива с учетом жесткости ограждающей конструкции // Механика композиционных материалов и конструкций. 2021. Т. 27. № 3. С. 396–409. doi: 10.33113/mkmk.ras.2021.27.03.396_409.07. EDN FPQJTC.

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).