Quick-assembly units in steel frames of multi-storey buildings

Cover Page

Cite item

Full Text

Abstract

Introduction. In the conditions of steel construction development, it is relevant to create a nomenclature of standard unified products, assemblies and parts of steel frames, which will allow engineers to create projects of modern prefabricated buildings with less labour costs, and builders to implement them quickly and efficiently. The joints of the column junction in height and their coupling with the floor beams are considered. In these design solutions, the forces are transmitted by direct contact of the end surfaces of the connected elements, which avoids the execution of mounting welds and a large number of bolted connections. As a result, when using contact connections, the installation time and the cost of construction of the metal frame are reduced.Materials and methods. When considering contact problems, the Saint-Venant principle is not applicable, it is important to explore the immediate areas of the contact surfaces of the elements. The nodes were developed using the example of a typical frame of a five-storey building with cell sizes from 3 × 3 to 6 × 6 m with structural elements of specified sections.Results. The possible contact connections of the frame elements are presented, which allow assembly only by installing them on top of each other and finishing adjustment. Such connections, due to the work of the contact surfaces on the crumple, allow transmitting not only longitudinal forces, but also some of the bending moments.Conclusions. The proposed options for column joints and beam-to-column junctions are non-typical and not previously used in engineering practice. For the widespread use of such units in the practice of designing steel frames of multi-storey buildings, it is necessary to investigate their bearing capacity and deformability comprehensively. It is of interest to study the influence of the geometric parameters of the connecting elements on the stiffness of the nodes and on the stress-strain state of the frame as a whole. The present research will be conducted using computer software and experiment.

About the authors

A. R. Tusnin

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: tusninar@mgsu.ru
ORCID iD: 0000-0002-9997-9436

I. V. Myl’nikov

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: miv_2499@mail.ru
ORCID iD: 0009-0000-4381-7393

References

  1. Проектирование металлических конструкций / под ред. А.Р. Туснина. М., 2020. 436 с.
  2. Heinisuo M., Laasonen M., Ronni H. Integration of joint design of steel structurres using product model // Proceedings of the International Conference on Computing in Civil and Building Engineering ICCBE. 2010. Pp. 323–328.
  3. Hasançebi O. Cost efficiency analyses of steel frameworks for economical design of multi-storey buildings // Journal of Constructional Steel Research. 2017. Vol. 128. Pp. 380–396. doi: 10.1016/j.jcsr.2016.09.002
  4. Pershakov V., Bieliatynskyi A., Bilyk S., Bakulin Y., Pylypenko O., Bolotov G. et al. Structural designs of multy-storey buildings // Proceedings of National Aviation University. 2019. Vol. 81. Issue 4. doi: 10.18372/2306-1472.81.14599
  5. Lacey A.W., Chen W., Hao H., Bi K. Structural response of modular buildings — an overview // Journal of Building Engineering. 2018. Vol. 16. Pp. 45–56. doi: 10.1016/j.jobe.2017.12.008
  6. Ma H., Huang Z., Song X., Ling Y. A Study on Mechanical Performance of an Innovative Modular Steel Building Connection with Cross-Shaped Plug-In Connector // Buildings. 2023. Vol. 13. Issue 9. P. 2382. doi: 10.3390/buildings13092382
  7. Chen Z., Khan K., Khan A., Javed K., Liu J. Exploration of the multidirectional stability and response of prefabricated volumetric modular steel structures // Journal of Constructional Steel Research. 2021. Vol. 184. P. 106826. doi: 10.1016/j.jcsr.2021.106826
  8. Sendanayake S.V., Thambiratnam D.P., Perera N., Chan T., Aghdamy S. Seismic Mitigation of Steel Modular Building Structures through Innovative Inter-Modular Connections // Heliyon. 2019. Vol. 5. Issue 11. P. e02751. doi: 10.1016/j.heliyon.2019.e02751
  9. Nadeem G., Safiee N.A., Bakar N.A., Karim I.A., Nasir N.A.M. Evaluation of slip behaviour of self-locking modular steel connection // Journal of Constructional Steel Research. 2022. Vol. 197. P. 107467. doi: 10.1016/j.jcsr.2022.107467
  10. Нефедов Г.В. Строительство домов сред-ней этажности на каркасах из легких стальных конструкций // Промышленное и гражданское строительство. 2020. № 7. С. 10–15. doi: 10.33622/0869-7019.2020.07.10-15. EDN YDNMJA.
  11. Yao G., Chen Y., Yang Y., Ma X., Men W. Investigation on buckling performance of prefabricated light steel frame materials under the action of random defects during construction // Materials. 2023. Vol. 16. Issue 16. P. 5666. doi: 10.3390/ma16165666
  12. Baskaran R., Fernando P. Steel frame structure defect detection using image processing and artificial intelligence // 2021 International Conference on Smart Generation Computing, Communication and Networking (SMART GENCON). 2021. doi: 10.1109/SMARTGENCON51891.2021.9645845
  13. Lindner J. Old and new solutions for contact splices in columns // Journal of Constructional Steel Research. 2008. Vol. 64. Issue 7–8. Pp. 833–844. doi: 10.1016/j.jcsr.2008.01.026
  14. Li D., Uy B., Patel V., Aslani F. Behaviour and design of demountable steel column-column connections // Steel and Composite Structures. 2016. Vol. 22. Issue 2. Pp. 429–448. doi: 10.12989/scs.2016.22.2.429
  15. Босаков С.B. Контактная задача для торца упругой полуполосы // Наука и техника. 2023. № 22 (2). С. 127–130. doi: 10.21122/2227-1031-2023-22-2-127-130
  16. Snijder H.H., Hoenderkamp J.C.D. Influence of end plate splices on the load carrying capacity of columns // Journal of Constructional Steel Research. 2008. Vol. 64. Issue 7–8. Pp. 845–853. doi: 10.1016/j.jcsr.2008.01.020
  17. Lim R.Z.C., Looi D.T.W., Chen M.T., Tsang H.H., Wilson J.L. A component-based macro-mechanical model for inter-module connections in steel volumetric buil-dings // Journal of Constructional Steel Research. 2023. Vol. 207. P. 107954. doi: 10.1016/j.jcsr.2023.107954
  18. Yang C., Xu B., Xia J., Chang H., Chen X., Ma R. Mechanical behaviors of inter-module connections and assembled joints in modular steel buildings : a comprehensive review // Buildings. 2023. Vol. 13. Issue 7. P. 1727. doi: 10.3390/buildings13071727
  19. Туснина В.М., Коляго А.А. К вопросу действительной работы податливых узлов стальных каркасов многоэтажных зданий // Промышленное и гражданское строительство. 2018. № 2. С. 28–34. EDN YTCEAU.
  20. Bazarchi E., Davaran A., Lamarche C.P., Roy N., Parent S. Experimental and numerical investigation of a novel vertically unconstrained steel inter-modular connection // Thin-Walled Structures. 2023. Vol. 183. P. 110364. doi: 10.1016/j.tws.2022.110364
  21. Кузнецов С.А. Механика контактного взаимодействия : конспект лекций. 2020. 77 с.
  22. Туснин А.Р. Стальной каркас малоэтажного здания // Промышленное и гражданское строительство. 2017. № 11. С. 18–22. EDN ZTTDKX.
  23. Туснин А.Р., Вараксин П.А. Типовой стальной каркас пятиэтажного здания // Промышленное и гражданское строительство. 2018. № 10. С. 45–49. EDN SKGHNZ.
  24. Туснина О.А. Конструктивные решения узлов стального каркаса для малоэтажных жилых зданий // Промышленное и гражданское строительство. 2017. № 11. С. 23–27. EDNZTTDLR.
  25. Abbasi M., Rasmussen K.J.R., Khezri M., Schafer B.W. Experimental investigation of the sectional buckling of built-up cold-formed steel columns // Journal of Constructional Steel Research. 2023. Vol. 203. P. 107803. doi: 10.1016/j.jcsr.2023.107803

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).