Computational aerodynamic studies of the MIBC “Moscow-City” complex during sequential construction of buildings

Cover Page

Cite item

Full Text

Abstract

Introduction. Computational studies of aerodynamic interference of the MIBC “Moscow-City” complex with sequential construction of buildings, taking into account their chronological order are carried out. Previous studies only considered the designed buildings and structures, along with the surrounding actual and future development, without computational analysis of their impact on the already constructed buildings. The study demonstrates the importance of considering aerodynamic interference in numerical simulation. It draws conclusions on the mutual influence of high-rise buildings and identifies the wind attack angles that contribute to the maximum values of the average and pulsation components of the wind action.Materials and methods. Numerical simulation methods in the ANSYS Fluent software package were used to conduct computational analysis. Quasi-two-dimensional aerodynamic models of the building complex of MIBC “Moscow-City” were developed, verified and validated for the computational studies.Results. The paper presents the results of 256 design cases, including 13 design variants for the consecutive erection of buildings in the MIBC “Moscow-City” complex and 19 calculations of freestanding high-rise buildings. Each calculation was performed for eight wind attack directions. The paper provides the average and pulsation total aerodynamic forces and moments for each building of the complex, depending on the chronology of building construction. The radar charts of aerodynamic coefficients (average and pulsation) were used to determine the most dangerous wind directions. The number of constructed buildings in the MIBC “Moscow-City” complex was taken into account.Conclusions. Based on the example of the sequential construction of the MIBC “Moscow-City” complex, this study emphasizes the importance of considering aerodynamic interference in dense and changing urban environments for both new and existing buildings. Aerodynamic interference can result in both wind shielding effects and increased wind, which affects the mechanical safety of buildings and structures.

About the authors

S. G. Saiyan

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: Berformert@gmail.com
ORCID iD: 0000-0003-0694-4865

A. M. Efimova

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: sasha.basket.8@yandex.ru

References

  1. Белостоцкий А.М., Акимов П.А., Афанасьева И.Н. Вычислительная аэродинамика в задачах строительства : учебное пособие. М. : АСВ, 2017. 720 с.
  2. Гузеев А., Корнилов Д., Короткин А., Соловьев С. Аэродинамические испытания высотных зданий и сооружений // Высотные здания. 2015. № 1. С. 102–105.
  3. Kar R., Dalui S.K. Wind interference effect of neighbouring square buildings in rhombic arrangement on an octagonal building // ASPS Conference Proceedings. 2022. Vol. 1. Issue 1. Pp. 1463–1469. doi: 10.38208/acp.v1.677
  4. Zu G., Lam K. LES and wind tunnel test of flow around two tall buildings in staggered arrangement // Computation. 2018. Vol. 6. Issue 2. P. 28. doi: 10.3390/computation6020028
  5. Sanyal P. AELH-, CFD-, and ANN-based wind interference zone prediction of regular tall buildings // Asian Journal of Civil Engineering. 2023. Vol. 24. Issue 8. Pp. 3881–3891. doi: 10.1007/s42107-023-00683-5
  6. Gurjar S., Amin J.A. Numerical simulation of Wind induced mean interference between two tall buildings // Journal of Materials and Engineering Structures. 2017. No. 4. Pp. 181–192.
  7. Cui H., An H., Ma M., Han Z., Saha S.C., Liu Q. Experimental study on wind load and wind-induced interference effect of three high-rise buildings // Journal of Applied Fluid Mechanics. 2023. Vol. 16. Issue 11. doi: 10.47176/jafm.16.11.1897
  8. Wu X., Sun Y., Wu Y., Su N., Peng S. The interference effects of wind load and wind-induced dynamic response of quayside container cranes // Applied Sciences. 2022. Vol. 12. Issue 21. P. 10969. doi: 10.3390/app122110969
  9. Khanduri A.C. Wind-induced interference effects on buildings-integrating experimental and computerized approaches: a thesis doctor of philosophy. Canada, 1997. 334 p.
  10. Гамбал С., Стоянов С. Аэродинамика высотных зданий // Высотные здания. 2006. № 1. С. 52–53.
  11. Ekici E. Plot 17–18 project: tall building design in “Moscow-City” // CTBUH 2016 Shenzhen, Guangzhou, Hong Kong Conference. 2016. Pp. 1314–1321.
  12. Белостоцкий А.М., Дубинский С.И., Афанасьева И.Н. Численное моделирование задач строительной аэродинамики. Разработка методик расчета ветровых воздействий и исследование реальных объектов // Вестник МГСУ. 2010. № 4–5. С. 182–185. EDN RTUJSB.
  13. Дубинский С.И. Численное моделирование ветровых воздействий на высотные здания и комплексы : дис. … канд. техн. наук. М., 2010. 198 с. EDN QEVMND.
  14. Белостоцкий А.М., Негрозова И.Ю., Горячевский О.С. Оценка аэроупругой устойчивости шпиля башни // Вестник МГСУ. 2023. Т. 18. № 11. С. 1745–1762. doi: 10.22227/1997-0935.2023.11.1745-1762
  15. Горячевский О.С. Численное моделирование ветровых давлений на окна. Валидация для типового многоэтажного здания квадратной формы // International Journal for Computational Civil and Struc-tural Engineering. 2023. № 19 (3). С. 114–129. doi: 10.22337/2587-9618-2023-19-3-114-129
  16. Попов Н.А. Проведение комплекса работ по статистическому и графическому анализу результатов модельных испытаний в аэродинамической трубе здания, возводимого на участках № 2–3 ММДЦ «Москва-Сити», и прилегающих пешеходных зонах. М. : Эталон-Проект, 2007. 85 с.
  17. Попов Н.А. Рекомендации по назначению расчетных ветровых нагрузок, в соответствии с тре-бованиями российских норм расчетных ветровых нагрузок, действующих на здание, возводимое на участках № 2–3 «ММДЦ Москва-Сити». М. : ЦНИИСК им. Кучеренко, 2007. 51 с.
  18. Wang X., Zhang G., Li Y., Kong H., Liu L., Zhang C. Field measurements of wind-induced responses of the shanghai world financial center during super typhoon Lekima // Sensors. 2023. Vol. 23. Issue 14. P. 6519. doi: 10.3390/s23146519
  19. Yi J., Li Q.S. Wind tunnel and full-scale study of wind effects on a super-tall building // Journal of Fluids and Structures. 2015. Vol. 58. Pp. 236–253. doi: 10.1016/j.jfluidstructs.2015.08.005
  20. Charisi S., Thiis T.K., Aurlien T. Full-scale measurements of wind-pressure coefficients in twin medium-rise buildings // Buildings. 2019. Vol. 9. Issue 3. P. 63. doi: 10.3390/buildings9030063
  21. Lee B.E. The effect of turbulence on the surface pressure field of a square prism // Journal of Fluid Mechanics. 1975. Vol. 69. Issue 2. Pp. 263–282. doi: 10.1017/S0022112075001437
  22. Bearman P.W., Obasaju E.D. An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders // Journal of Fluid Mechanics. 1982. Vol. 119. Pp. 297–321. doi: 10.1017/S0022112082001360
  23. Tamura T., Ono Y. LES analysis on aeroelastic instability of prisms in turbulent flow // Journal of Wind Engineering and Industrial Aerodynamics. 2003. Vol. 91. Issue 12–15. Pp. 1827–1846. doi: 10.1016/j.jweia.2003.09.032
  24. Du X., Shi D., Dong H., Liu Y. Flow around square-like cylinders with corner and side modifications // Journal of Wind Engineering and Industrial Aerodynamics. 2021. Vol. 215. P. 104686. doi: 10.1016/j.jweia.2021.104686
  25. Cao W., Wang X., Liu Y., Yin Y., Yang J., An J. Large eddy simulation on wind-induced interference effects of staggered chamfered square cylinders // Scientific Reports. 2023. Vol. 13. Issue 1. doi: 10.1038/s41598-023-44711-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).