Calculation of cooling of building premises in emergency modes at variable outdoor temperature
- Authors: Samarin O.D.1
-
Affiliations:
- Moscow State University of Civil Engineering (National Research University) (MGSU)
- Issue: Vol 19, No 1 (2024)
- Pages: 77-83
- Section: Engineering systems in construction
- URL: https://journals.rcsi.science/1997-0935/article/view/254470
- ID: 254470
Cite item
Full Text
Abstract
Introduction. Further development of methods of calculation the thermal regime of premises at emergency modes of operation of heat supply systems is actual. The aim of the research is to find an approximate analytical dependence of the air temperature in the building premises on time in conditions of a sharp cold snap with further linear decrease in outdoor temperature. As a scientific hypothesis, the position is put forward about the possibility of expressing this dependence through exponential functions using as an argument the square root of the time since the beginning of cooling.Materials and methods. The basic differential equation of the convective heat balance in the room, including the most significant components of the heat flow is used under the assumption of the linear character of the outdoor temperature decrease over time, taking into account the peculiarities of the temperature wave propagation in massive enclosures in the initial period of time. The Bernoulli method for the linear differential equation of the first order is applied by representing the solution as a product of two functions.Results. The analytical expression for the approximate dependence of the temperature change in the room at a sharp cold snap with the continuation of the further decrease of the outdoor temperature according to the linear law is found. The obtained refinement of this dependence is evaluated in comparison with the solution for the case of constant outdoor parameters on the example of one of the rooms in a residential building for the climatic conditions of Moscow.Conclusions. The structure of the obtained solution is analyzed and it is shown that the continuation of external cooling leads to acceleration of room cooling, and the solution for the cooling mode previously considered by the author at constant outdoor air temperature is its special case. It was found that the continuation of external cooling additionally leads to some straightening of the internal temperature graph, because the growth of heat loss through inertial-free structures begins to compensate to some extent for the cooling slowdown associated with the release of accumulated heat from massive encloses.
Keywords
About the authors
O. D. Samarin
Moscow State University of Civil Engineering (National Research University) (MGSU)
Email: samarinod@mgsu.ru
ORCID iD: 0000-0003-2533-9732
SPIN-code: 1708-9583
References
- Рафальская Т.А., Березка А.К., Савенков А.А. Теоретическое исследование теплозащиты ограждающих конструкций зданий при аварийном теплоснабжении // Актуальные вопросы архитектуры и строительства : мат. Х Всерос. науч.-техн. конф. 2017. С. 213–218. EDN ZVXSEN.
- Mansurov R., Rafalskaya T., Efimov D. Mathematical modeling of thermal technical characteristics of external protections with air layers // E3S Web of Conferences. 2019. Vol. 97. P. 06007. doi: 10.1051/e3sconf/20199706007
- Rafalskaya T. Safety of engineering systems of buildings with limited heat supply // IOP Conference Series : Materials Science and Engineering. 2021. Vol. 1030. Vol. 1. P. 012049. doi: 10.1088/1757-899X/1030/1/012049
- Rafalskaya T.A. Simulation of thermal characteristics of heat supply systems in variable operating // Journal of Physics: Conference Series. 2019. Vol. 138. Issue 1. P. 012140. doi: 10.1088/1742-6596/1382/1/012140
- Latif M., Nasir A. Decentralized stochastic control for building energy and comfort management // Journal of Building Engineering. 2019. Vol. 24. P. 100739. doi: 10.1016/j.jobe.2019.100739
- Serale G., Fiorentini M., Capozzoli A., Bernardini D., Bemporad A. Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: problem formulation, applications and opportunities // Energies. 2018. Vol. 11. Issue 3. P. 631. doi: 10.3390/en11030631
- Ryzhov A., Ouerdane H., Gryazina E., Bischi A., Turitsyn K. Model predictive control of indoor microclimate: existing building stock comfort improvement // Energy Conversion and Management. 2019. Vol. 179. Pp. 219–228. doi: 10.1016/j.enconman.2018.10.046
- Avsyukevich D., Shishkin E., Litvinova N., Mirgorodskiy A. Thermoeconomic model of a building’s thermal protection envelope and heating system // Magazine of Civil Engineering. 2022. № 5 (113). P. 11302. doi: 10.34910/MCE.113.2. EDN TAVHNO.
- Rulik S., Wróblewski W., Majkut M., Strozik M., Rusin K. Experimental and numerical analysis of heat transfer within cavity working under highly non-stationary flow conditions // Energy. 2020. Vol. 190. P. 116303. doi: 10.1016/j.energy.2019.116303
- Bilous I., Deshko V., Sukhodub I. Parametric analysis of external and internal factors influence on building energy performance using non-linear multivariate regression models // Journal of Building Engineering. 2018. Vol. 20. Pp. 327–336. doi: 10.1016/j.jobe.2018.07.021
- Millers R., Korjakins A., Lešinskis A., Borodinecs A. Cooling panel with integrated PCM layer: A verified simulation study // Energies. 2020. Vol. 13. Issue 21. P. 5715. doi: 10.3390/en13215715
- Petrichenko M.R, Nemova D.V., Kotov E.V., Tarasova D.S., Sergeev V.V. Ventilated façade integrated with the HVAC system for cold climate // Magazine of Civil Engineering. 2018. No. 1 (77). Pp. 47–58. doi: 10.18720/MCE.77.5. EDN XPKZNB.
- Li N., Chen Q. Experimental study on heat transfer characteristics of interior walls under partial-space heating mode in hot summer and cold winter zone in China // Applied Thermal Engineering. 2019. Vol. 162. P. 114264. doi: 10.1016/j.applthermaleng.2019.114264
- Belussi L., Barozzi B., Bellazzi A., Danza L., Devitofrancesco A., Ghellere M. et al. A review of performance of zero energy buildings and energy efficiency solutions // Journal of Building Engineering. 2019. Vol. 25. P. 100772. doi: 10.1016/j.jobe.2019.100772
- Sha H., Xu P., Yang Z., Chen Y., Tang J. Overview of computational intelligence for building energy system design // Renewable and Sustainable Energy Reviews. 2019. Vol. 108. Pp. 76–90. doi: 10.1016/j.rser.2019.03.018
- Kharchenko V., Ponochovnyi Y., Boyarchuk A., Brezhnev E., Andrashov A. Monte-Carlo simulation and availability assessment of the smart building automation systems considering component failures and attacks on vulnerabilities // Contemporary Complex Systems and Their Dependability. 2019. Pp. 270–280. doi: 10.1007/978-3-319-91446-6_26
- Самарин О.Д. Расчет теплового режима помещения при использовании интегральных регуляторов для климатических систем // Известия вузов. Строительство. 2020. № 2 (734). С. 28–35. doi: 10.32683/0536-1052-2020-734-2-28-35. EDN SSRGOX.
- Самарин О.Д., Клочко А.К. Численные и приближенные методы в задачах строительной теплофизики и климатологии. М. : МГСУ, 2021. 96 с. EDN VAPFTA.
- Самарин О.Д. Расчет остывания помещений здания в аварийных режимах для обеспечения надежности их теплоснабжения // Вестник МГСУ. 2019. Т. 14. № 4. С. 496–501. doi: 10.22227/1997-0935.2019.4.496-501
- Богословский В.Н. Строительная теплофизика. 3-е изд. СПб. : Изд-во АВОК СЕВЕРО-ЗАПАД, 2006. 400 с.
Supplementary files
