Estimated effect of rotational components of seismic impact on the strength-strain state of simple systems

Cover Page

Cite item

Full Text

Abstract

Introduction. At the present time, when calculating structures for seismic effects, usually only the translational components of seismic effects are taken into account. However, the analysis of emerging defects in buildings and structures subjected to seismic action indicates the spatial nature of structural behavior, which indicates the necessity to take into account also the rotational components of seismic action in the design of all buildings and structures in seismic regions. The objective of this study is to assess the influence of rotational components on the stress-strain state of simple systems. In the scope of this study, the rotational components of accelerograms are obtained from both the action of only one translational component and from the action of two translational components of seismic action for an integral seismic motion model; and the equation of motion has been derived considering them.Materials and methods. The differential equations of motion for the investigated systems were solved in both planar and spatial settings. The problem in the plane formulation was solved using the central differences method in LS-DYNA software and the fourth-order Runge – Kutta method in the MATLAB software, considering one translational component and also considering one translational and one rotational component. The problem in the spatial setting was solved in the LS-DYNA software, considering only three spatial components and also considering three translational and three rotational components.Results. During the study, maximum and minimum displacement values and von Mises stress values were obtained, resulting from the action of only translational components and from the combined action of translational and rotational components.Conclusions. Based on the results of the study, a comparative analysis was conducted, leading to the conclusion that the influence of rotational components of seismic action on the stress-strain state of the investigated systems is insignificant. However, the increase in the contribution of rotational components to the stress-strain state of the system is proportional to its height.

About the authors

O. V. Mkrtychev

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: mkrtychev@yandex.ru
ORCID iD: 0000-0002-2828-3693

A. A. Reshetov

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: elm97@mail.ru
ORCID iD: 0000-0002-8267-2665

E. M. Lokhova

Moscow State University of Civil Engineering (National Research University) (MGSU)

Email: elm97@mail.ru
ORCID iD: 0000-0001-8988-4516
SPIN-code: 3530-6216

References

  1. Назаров Ю.П. Разработка методов расчета сооружений как пространственных систем на сейсмическое воздействие : дис. … д-ра техн. наук. М., 1999. 452 c.
  2. Бондарев Д.Е. Метод расчета сейсмоизолированных зданий на ротационные воздействия, вызванные землетрясением : дис. ... канд. техн. наук. СПб., 2019. 202 с.
  3. Позняк Е.В. Развитие методов волновой теории сейсмостойкости строительных конструкций : дис. ... д-ра техн. наук. М., 2018. 281 c.
  4. Cacciola P. A stochastic approach for generating spectrum compatible fully nonstationary earthquakes // Computers & Structures. 2010. Vol. 88. Issue 15–16. Pp. 889–901. doi: 10.1016/j.compstruc.2010.04.009
  5. Ghaffarzadeh H. Generation of spatially varying ground motion based on response spectrum using artificial neural networks // International Journal of Science and Engineering Investigations. 2015. Vol. 4. Issue 38. Pp. 233–242.
  6. Rezaeian S., Der Kiureghian A. Simulation of synthetic ground motions for specified earthquake and site characteristics // Earthquake Engineering & Structural Dynamics. 2010. Vol. 39. Issue 10. Pp. 1155–1180. doi: 10.1002/eqe.997
  7. Wolf J.P. Dynamic Soil-Structure Interaction. N. J. : Prentice-Hall, Englewood Cliffs, 1985. 481 p.
  8. Chopra A.K. Dynamics of structures: Theory and applications to earthquake engineering. Prentice Hall, 1995. 761 p.
  9. Abbasiverki R., Malm R., Ansell A., Nordstrom E. Nonlinear behaviour of concrete buttress dams under high-frequency excitations taking into account topographical amplifications // Shock and Vibration. 2021. Vol. 2021. Pp. 1–22. doi: 10.1155/2021/4944682
  10. Løkke A., Chopra A. Direct-finite-element method for nonlinear earthquake analysis of concrete dams including dam–water–foundation rock interaction // PEER Reports. 2019. doi: 10.55461/crjy2161
  11. Назаров Ю.П., Позняк Е.В. Оценка ротационных компонент сейсмического движения грунта // Основания, фундаменты и механика грунтов. 2015. № 6. С. 32–36. EDN VTLCRJ.
  12. Ландау Л.Д., Лифшиц Е.М. Теория поля. М. : Наука, 1967. 460 с.
  13. Мкртычев О.В., Райзер В.Д. Теория надежности в проектировании строительных конструкций : монография. М. : Изд-во АСВ, 2016. 906 с. EDN ZCWYKL.
  14. Мкртычев О.В., Решетов А.А. Сейсмические нагрузки при расчете зданий и сооружений : монография. М. : Изд-во АСВ, 2017. 140 с. EDN ZCWVMR.
  15. Reshetov A.A., Lokhova E.M. Assessment of the influence of the rotational components of seismic action on the SSS of a multistorey reinforced concrete building // International Journal for Computational Civil and Structural Engineering. 2022. Vol. 18. Issue 1. Pp. 82–91. doi: 10.22337/2587-9618-2022-18-1-82-91
  16. De la Llera J.C., Chopra A.K. Accidental torsion in buildings due to base rotational excitation // Earthquake Engineering and Structural Dynamics. 1994. Vol. 23. Issue 9. Pp. 1003–1021. doi: 10.1002/eqe.4290230906
  17. Newmark N.M. A method of computation for structural dynamics // Journal of the Engineering Mechanics Division. 1959. Vol. 85. Issue 3. Pp. 67–94. doi: 10.1061/jmcea3.0000098
  18. Clough R.W., Penzien J. Dynamics of structures. 2nd ed. New York : McGraw-Hill, 1993. 320 p.
  19. Basu D., Whittaker A.S., Constantinou M.C. Estimating rotational components of ground motion using data recorded at a single station // Journal of Engineering Mechanics. 2012. Vol. 138. Issue 9. Pp. 1141–1156. doi: 10.1061/(asce)em.1943-7889.0000408
  20. Luco J.E. Torsional response of structures to obliquely incident seismic sh waves // Earthquake Engineering and Structural Dynamics. 1976. Vol. 4. Issue 3. Pp. 207–219. doi: 10.1002/eqe.4290040302
  21. González C.A. R., Caparrós-Mancera J.J., Hernández-Torres J.A., Rodríguez-Pérez Á.M. Nonlinear analysis of rotational springs to model semi-rigid frames // Entropy. 2022. Vol. 24. Issue 7. P. 953. doi: 10.3390/e24070953
  22. Valente M., Milani G. Alternative retrofitting strategies to prevent the failure of an under-designed reinforced concrete frame // Engineering Failure Analysis. 2018. Vol. 89. Pp. 271–285. doi: 10.1016/j.engfailanal.2018.02.001
  23. Bolisetti C., Coleman J. Light water reactor sustainability program advanced seismic soil structure modeling. Idaho National Laboratory, Idaho Falls, Idaho, 2015.
  24. Bielak J. Domain reduction method for three-dimensional earthquake modeling in localized regions, Part I: Theory // Bulletin of the Seismological Society of America. 2003. Vol. 93. Issue 2. Pp. 817–824. doi: 10.1785/0120010251

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).