Technology Selection Using the TOPSIS Method

Cover Page

Cite item

Abstract

Innovative technologies are increasingly determining the competitive advantage of enterprises. They also form the basis for modern manufacturing processes, enabling them to meet the needs of society. Awareness of the need for technological development has become widespread, which has been confirmed by international and national programs, scientific and research activities, as well as emerging institutions. Considering the increasing demand for innovative technologies and the developed market, it appears important to use specific methods and tools for the effective analysis and selection of technologies. This paper presents a proposal to use multi-attribute decision-making methods during technology assessment and selection. The proposed concept combines an S-life-cycle analysis (S-LCA), which determines the performance of a technology, the method of Technology Readiness Levels (TRL), which examines the technological maturity, and the TOPSIS method, which allows for developing a technology ranking. To verify this approach, the example of a ranking and selection of the best road technology in Poland is presented, considering the proposed set of criteria and sub-criteria. In the technology assessment, the criteria for innovation, competitiveness, and usefulness of this technology were used in addition to S-LSA and TRL methods.

About the authors

Katarzyna Halicka

Bialystok University of Technology

Email: k.halicka@pb.edu.pl
Poland, 45A, Wiejska Street, 15-351 Bialystok, Poland

References

  1. Aloini D., Dulmin R., Mininno V., Pellegrini L., Farina G. (2018) Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector // Technological Forecasting and Social Change. Vol. 131. P. 38-48. DOI:https://doi.org/10.1016/j.techfore.2017.07.010
  2. Anand M.B., Vinodh S. (2018) Application of fuzzy AHP - TOPSIS for ranking additive manufacturing processes for microfabrication // Rapid Prototyping Journal. Vol. 24. № 2. P. 424-435. DOI:https://doi.org/10.1108/RPJ-10-2016-0160
  3. Ansari R., Soltanzadeh J., Tavassoli A. (2016) Technology selection between technology management and decision making: A case study from the Iranian automotive industry // International Journal of Automotive Technology and Management. Vol. 16. № 4. P. 365-388. DOI:https://doi.org/10.1504/IJATM.2016.081618
  4. Arora S.K., Foley R.W., Youtie J., Shapira P., Wiek A. (2014) Drivers of technology adoption: The case of nanomaterials in building construction // Technological Forecasting and Social Change. Vol. 87. P. 232-244. DOI:https://doi.org/10.1016/j.techfore.2013.12.017
  5. Boran F.E., Genc S., Kurt M., Akay D. (2009) A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method // Expert Systems with Applications. Vol. 36. № 8. P. 11363-11368.
  6. Buyukozkan G., Guler M. (2017) A hesitant fuzzy based TOPSIS approach for smart glass evaluation // Proceedings of: EUSFLAT-2017 -The 10th Conference of the European Society for Fuzzy Logic and Technology, September 11-15, 2017, Warsaw, Poland / Eds. J. Kacprzyk, E. Szmidt, S. Zadrozny, K. Atanassov, M. Krawczak. Heidelberg, Dordrecht, London, New York: Springer. P. 330-341. DOI:https://doi.org/10.1007/978-3-319-66830-7_30
  7. Carlsen H., Dreborg K.H., Godman-Hansson S.O., Johansson L., Wikman-Svahn P. (2010) Assessing socially disruptive technological change // Technology in Society. Vol. 32. P. 209-218. Режим доступа: , дата обращения 14.03.2019. DOI:https://doi.org/10.1016/j.techsoc.2010.07.002
  8. Chodakowska E., Nazarko J. (2017) Environmental DEA method for assessing productivity of European countries // Technological and Economic Development of Economy. Vol. 23. № 4. P. 589-607. DOI:https://doi.org/10.3846/20294913.2016.1272069
  9. Coates J.F. (1998) Technology assessment as guidance to governmental management of new technologies in developing countries // Technological Forecasting and Social Change. Vol. 58. № 1-2. P. 35-46. DOI:https://doi.org/10.1016/S0040-1625(97)00087-5
  10. Daim T.U., Yoon B.S., Lindenberg J., Grizzi R., Estep J., Oliver T. (2018) Strategic roadmapping of robotics technologies for the power industry: A multicriteria technology assessment. Technological Forecasting and Social Change. Vol. 131. P. 49-66. DOI:https://doi.org/10.1016/j.techfore.2017.06.006
  11. Ejdys J. (2015) Innovativeness of residential care services in Poland in the context of strategic orientation // Procedia - Social and Behavioral Sciences. Vol. 213. P. 746-752. DOI:https://doi.org/10.1016/j.sbspro.2015.11.461
  12. Ejdys J., Matuszak-Flejszman A., Szymanski M., Ustinovicius L., Shevchenko G., Lulewicz-Sas A. (2016) Crucial factors for Improving the ISO14001 Environmental Management System // Journal of Business Economics and Management. Vol. 17. № 1. P. 52-73. DOI:https://doi.org/10.3846/16111699.2015.1065905
  13. Elahi M., Alvandi M., Valehzagharad H.K., Memarzade M. (2011) Selecting the best ABS sensor technology using fuzzy MADM // Scientific Research and Essays. Vol. 6. № 31. P. 6487-6498. DOI:https://doi.org/10.5897/SRE11.1079
  14. Fu J., Xie L., Qu M., Liang G., Ma X., Tang J., Zhang R., Bai Y. (2012) The application of entropy weight TOPSIS method to the optimization of wastewater treatment technology in livestock and poultry slaughtered plant // Shenyang Jianzhu Daxue Xuebao (Ziran Kexue Ban)/Journal of Shenyang Jianzhu University (Natural Science). Vol. 28. № 5. P. 909-914.
  15. Gajdos O., Jurickova I., Otawova R. (2015) Health technology assessment models utilized in the chronic care management // Proceedings of the Third International Conference, IWBBIO 2015, Granada, Spain, April 15-17, 2015 / Eds. F. Ortuno, I. Rojas. Heidelberg, Dordrecht, London, New York: Springer. P. 54-65.
  16. Gladysz B., Nalepa K., Santarek K. (2017) Justification of RFID implementation. A case study of white goods manufacturer // Management and Production Engineering Review. Vol. 8. № 4. P. 91-104. DOI:https://doi.org/10.1515/mper-2017-0040
  17. Goulet D. (1994) Participatory Technology-Assessment - Institutions and Methods // Technological Forecasting and Social Change. Vol. 45. № 1. P. 47-61. DOI:https://doi.org/10.1016/0040-1625(94)90062-0
  18. Govind Kharat M., Murthy S., Jaisingh Kamble S., Raut R.D., Kamble S.S. (2018) Fuzzy multi-criteria decision analysis for environmentally conscious solid waste treatment and disposal technology selection // Technology in Society. Vol. 57. P. 20-29. DOI:https://doi.org/10.1016/j.techsoc.2018.12.005
  19. Grimaldi M., Cricelli L., Di Giovanni M., Rogo F. (2015) The patent portfolio value analysis: A new framework to leverage patent information for strategic technology planning // Technological Forecasting and Social Change. Vol. 94. P. 286-302. DOI:https://doi.org/10.1016/j.techfore.2014.10.013
  20. Habbal A., Goudar S.I., Hassan S. (2017) Context-aware radio access technology selection in 5G ultra dense networks // IEEE Access. Vol. 5. P. 6636-6648. DOI:https://doi.org/10.1109/ACCESS.2017.2689725
  21. Habbal A., Goudar S.I., Hassan S. (2019) A context-aware radio access technology selection mechanism in 5G mobile network for smart city applications // Journal of Network and Computer Applications. Vol. 135. P. 97-107. DOI:https://doi.org/10.1016/j.jnca.2019.02.019
  22. Halicka K. (2017) Main Concepts of Technology Analysis in the Light of the Literature on the Subject // Procedia Engineering. Vol. 182. P. 291-298.
  23. Halicka K. (2018) The reference methodology of prospective analysis of technology in production engineering // 8th International Conference on Engineering, Project, and Product Management (EPPM 2017) Proceedings / Ed. S. Sahin. Heidelberg, Dordrecht, London, New York: Springer. P. 99-107. DOI:https://doi.org/10.1007/978-3-319-74123-9_11
  24. Hirushie K., Kasun H., Rehan S. (2017) Renewable energy technology selection for community energy systems: A case study for British Columbia. Paper presented at the 2017 CSCE Annual General Conference, Vancouver, BC, Canada. Режим доступа:https://www.researchgate.net/publication/326211412_Renewable_energy_technology_selection_for_community_energy_systems_A_case_study_for_British_Columbia, дата обращения 26.04.2019.
  25. Hwang C.L., Yoon K. (1981) Multiple Attribute Decision Making: Methods and Applications. Berlin: Springer-Verlag.
  26. Jiri M. (2018) The robustness of TOPSIS results using sensitivity analysis based on weight tuning // IFMBE Proceedings. Vol. 68. № 2. P. 83-86. DOI:https://doi.org/10.1007/978-981-10-9038-7_15
  27. Kacprzak D. (2017) Objective Weights Based on Ordered Fuzzy Numbers for Fuzzy Multiple Criteria Decision Making Methods // Entropy. Vol. 19. № 373. Режим доступа:https://pdfs.semanticscholar.org/9ff9/552d78357f946c5fd35b4822d5c6be693cac.pdf, дата обращения 12.04.2019. DOI:https://doi.org/10.3390/e19070373
  28. Kacprzak D. (2019) A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers // Expert Systems with Applications. Vol. 116. P. 243-254. DOI:https://doi.org/10.1016/j.eswa.2018.09.023
  29. Kalbar P.P., Karmakar S., Asolekar S.R. (2012) Selection of an appropriate wastewater treatment technology: A scenario-based multiple-attribute decision-making approach // Journal of Environmental Management. Vol. 113. P. 158-169. DOI:https://doi.org/10.1016/j.jenvman.2012.08.025
  30. Karatas M., Sulukan E., Karacan I. (2018) Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology // Energy. Vol. 153. P. 890-912. DOI:https://doi.org/10.1016/j.energy.2018.04.051
  31. Kikolski M., Chien-Ho Ko (2018) Facility layout design - review of current research directions // Engineering Management in Production and Services. Vol. 10. № 3. P. 70-79. DOI:https://doi.org/10.2478/emj-2018-0018
  32. Lee Y., James Chou C. (2016) Technology evaluation and selection of 3DIC integration using a three-stage fuzzy MCDM // Sustainability (Switzerland). Vol. 8. № 2. P. 1-15. Режим доступа:https://ideas.repec.org/a/gam/jsusta/v8y2016i2p114-d62915.html, дата обращения 23.04.2019. DOI:https://doi.org/10.3390/su8020114
  33. Lotfi F.H., Fallahnejad R. (2010) Imprecise Shannon's Entropy and Multi Attribute Decision Making // Entropy. Vol. 12. P. 53-62.
  34. Lu C., You J., Liu H., Li P. (2016) Health-carewaste treatment technology selection using the interval 2-tuple induced TOPSIS method // International Journal of Environmental Research and Public Health. Vol. 13. № 6. DOI:https://doi.org/10.3390/ijerph13060562
  35. Mardania A., Jusoha A., Halicka K., Ejdys J., Magruk A., Ungku Norulkamar U.A. (2018) Determining the utility in management by using multi-criteria decision support tools: A review // Economic Research/Ekonomska Istrazivanja. Vol. 31. P. 1666-1716. Режим доступа: , дата обращения 18.06.2019. DOI:https://doi.org/10.1080/1331677X.2018.1488600
  36. Mobinizadeh M., Raeissi P., Nasiripour A.A., Olyaeemanesh A., Tabibi S.J. (2016) A model for priority setting of health technology assessment: The experience of AHP-TOPSIS combination approach // DARU, Journal of Pharmaceutical Sciences. Vol. 24. P. 1. Режим доступа:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4827190/, дата обращения 11.05.2019. DOI:https://doi.org/10.1186/s40199-016-0148-7
  37. Nazarko J., Radziszewski P., Debkowska K., Ejdys J., Gudanowska A., Halicka K., Kilon J., Kononiuk A., Kowalski K., Krol J., Nazarko L., Sarnowski M., Vilutiene T. (2015) Foresight Study of Road Pavement Technologies // Procedia Engineering. Vol. 122. P. 129-136.
  38. Nazarko L. (2017) Future-Oriented Technology Assessment // Procedia Engineering. Vol. 182. P. 504-509. DOI:https://doi.org/10.1016/j.proeng.2017.03.144
  39. Nermed K. (2015) Wielokryterialna metoda wektora preferencji jako narzedzie wspomagajace proces decyzyjny [Multi-Criteria Preference Vector Method (PVM) as a tool supporting the decision making process] // Przeglad Statystyczny. Vol. 62. № 1. P. 93-115 (in Polish). Режим доступа:http://cejsh.icm.edu.pl/cejsh/element/bwmeta1.element.desklight-0f4c6200-68b5-4c3f-b307-ad24fcb0eef4, дата обращения 18.04.2019.
  40. Nouri F.A., Esbouei S.K., Antucheviciene J. (2015) A hybrid MCDM approach based on fuzzy ANP and fuzzy TOPSIS for technology selection // Informatica (Netherlands). Vol. 26. № 3. P. 369-388. DOI:https://doi.org/10.15388/Informatica.2015.53
  41. Oztaysi B. (2014) A decision model for information technology selection using AHP integrated TOPSIS-grey: The case of content management systems // Knowledge-Based Systems. Vol. 70. P. 44-54. DOI:https://doi.org/10.1016/j.knosys.2014.02.010
  42. Parkan C., Wu M. (1999) Decision-making and performance measurement models with applications to robot selection // Computers and Industrial Engineering. Vol. 36. № 3. P. 503-523.
  43. Peng S., Li T., Li M., Guo Y., Shi J., Tan G.Z., Zhang H. (2019) An integrated decision model of restoring technologies selection for engine remanufacturing practice // Journal of Cleaner Production. Vol. 206. P. 598-610. DOI:https://doi.org/10.1016/j.jclepro.2018.09.176
  44. Proceedings of the 5th International Congress on the Science and Technology of Ironmaking (ICSTI) 2009. P. 1039-1044.
  45. Puthanpura A.K., Khalifa R., Chan L. (2015) Assessing emerging automotive technologies for the future // 2015 Proceedings of PICMET ‘15: Management of the Technology Age. P. 2113-2120. Режим доступа:https://pdfs.semanticscholar.org/9fe1/3e67e3ba91d29f8c9c0a3787355bf9519ae6.pdf, дата обращения 22.04.2019. DOI:https://doi.org/10.1109/PICMET.2015.7273223
  46. Ren J. (2018) Technology selection for ballast water treatment by multi-stakeholders: A multi-attribute decision analysis approach based on the combined weights and extension theory // Chemosphere. Vol. 191. P. 747-760. DOI:https://doi.org/10.1016/j.chemosphere.2017.10.053
  47. Ren J.Z., Liang H.W., Chan F.T.S. (2017) Urban sewage sludge, sustainability, and transition for Eco-City: Multi-criteria sustainability assessment of technologies based on best-worst method // Technological Forecasting and Social Change. Vol. 116. P. 29-39. DOI:https://doi.org/10.1016/j.techfore.2016.10.070
  48. Restrepo-Garces A.R., Manotas-Duque D.F., Lozano C.A. (2017) Metodo Hibrido Multicriterio-ROA, para la seleccion de fuentes de energia renovables: Caso de estudio centros comerciales [Multicriteria hybrid method - ROA, for the choice of generation of renewable sources: Case study in shopping centers] // Ingeniare. Vol. 25. № 3. P. 399-414. 10.4067/S0718-33052017000300399 (in Spanish). DOI:https://doi.org/10.4067/S0718-33052017000300399(inSpanish)
  49. Roszkowska E., Kacprzak D. (2016) The fuzzy SAW and fuzzy TOPSIS procedures based on ordered fuzzy numbers // Information Sciences. Vol. 369. P. 564-584.
  50. Rudnik K., Kacprzak D. (2017) Fuzzy TOPSIS method with ordered fuzzy numbers for flow control in a manufacturing system // Applied Soft Computing. Vol. 52. P. 1020-1041. DOI:https://doi.org/10.1016/j.asoc.2016.09.027
  51. Schot J., Rip A. (1997) The past and future of constructive technology assessment // Technological Forecasting and Social Change. Vol. 54. № 2-3. P. 251-268. DOI:https://doi.org/10.1016/S0040-1625(96)00180-1
  52. Streimikiene D. (2013a) Assessment of road transport technologies based on GHG emission reduction potential and costs // Transformations in Business and Economics. Vol. 12. № 2. P. 138-147.
  53. Streimikiene D. (2013b) Assessment of energy technologies in electricity and transport sectors based on carbon intensity and costs // Technological and Economic Development of Economy. Vol. 19. № 4. P. 606-620. DOI:https://doi.org/10.3846/20294913.2013.837113
  54. Streimikiene D., Balezentiene L. (2012) Assessment of electricity generation technologies based on GHG emission reduction potential and costs // Transformations in Business and Economics. Vol. 11. № 2A. P. 333-343.
  55. Streimikiene D., Balezentis T., Balezentiene L. (2013) Comparative assessment of road transport technologies // Renewable and Sustainable Energy Reviews. Vol. 20. P. 611-618. DOI:https://doi.org/10.1016/j.rser.2012.12.021
  56. Tamosiunas A. (2018) Managing selection of wind power generation technologies // Business: Theory and Practice. Vol. 19. P. 309-321. DOI:https://doi.org/10.3846/btp.2018.31
  57. Tavana M., Khalili-Damghani K., Abtahi A. (2013) A hybrid fuzzy group decision support framework for advanced-technology prioritization at NASA // Expert Systems with Applications. Vol. 40. № 2. P. 480-491. DOI:https://doi.org/10.1016/j.eswa.2012.07.040
  58. Tavella E. (2016) How to make Participatory Technology Assessment in agriculture more ‘participatory': The case of genetically modified plants // Technological Forecasting and Social Change. Vol. 103. P. 119-126. DOI:https://doi.org/10.1016/j.techfore.2015.10.015
  59. Towhidi N., Tavakkoli-Moghaddam R., Peymandar M. (2009) Iron-making technology selection using a fuzzy hierarchical TOPSIS method.
  60. Tran T.A., Daim T. (2008) A taxonomic review of methods and tools applied in technology assessment // Technological Forecasting and Social Change. Vol. 75. P. 1396-1405. DOI:https://doi.org/10.1016/j.techfore.2008.04.004
  61. Van den Ende J., Mulder K., Knot M., Moors E., Vergragt P. (1998) Traditional and modern technology assessment: Toward a toolkit // Technological Forecasting and Social Change. Vol. 58. № 1-2. P. 5-21. DOI:https://doi.org/10.1016/S0040-1625(97)00052-8
  62. Vavrek R., Adamisin P., Kotulic R. (2017) Multi-Criteria Evaluation of Municipalities in Slovakia - Case Study in Selected Districts // Polish Journal of Management Studies. Vol. 16. № 2. P. 290-301. DOI:https://doi.org/10.17512/pjms.2017.16.2.25
  63. Velasquez M., Hester P.T. (2013) An Analysis of Multi-Criteria Decision Making Methods // International Journal of Operations Research. Vol. 2. № 10. P. 56-66.
  64. Versteeg T., Baumann M.J., Weil M., Moniz A.B. (2017) Exploring emerging battery technology for grid-connected energy storage with Constructive Technology Assessment // Technological Forecasting and Social Change. Vol. 115. P. 99-110. DOI:https://doi.org/10.1016/j.techfore.2016.09.024
  65. Vivekh P., Sudhakar M., Srinivas M., Vishwanthkumar V. (2017) Desalination technology selection using multi-criteria evaluation: TOPSIS and PROMETHEE-2 // International Journal of Low-Carbon Technologies. Vol. 12. № 1. P. 24-35.
  66. Wan S.-P., Wang F., Dong J.-Y. (2016) A novel group decision making method with intuitionistic fuzzy preference relations for RFID technology selection // Applied Soft Computing Journal. Vol. 38. P. 405-422. DOI:https://doi.org/10.1016/j.asoc.2015.09.039
  67. Winebrake J.J., Creswick B.P. (2003) The future of hydrogen fueling systems for transportation: An application of perspective-based scenario analysis using the analytic hierarchy process // Technological Forecasting and Social Change. Vol. 70. № 4. P. 35-384. DOI:https://doi.org/10.1016/S0040-1625(01)00189-5
  68. Yue Z. (2014) TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting // Information Sciences. Vol. 277. P. 141-153.
  69. Zavadskas E.K., Mardani A., Turskis Z., Jusoh A., Nor K.M.D. (2016) Development of TOPSIS method to solve complicated decision-making problems: An overview on developments from 2000 to 2015 // International Journal of Information Technology and Decision Making. Vol. 15. № 3. P. 645-682.
  70. Zhang C., Chen C., Streimikiene D., Balezentis T. (2019) Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies // Applied Soft Computing Journal. Vol. 79. P. 410-423. DOI:https://doi.org/10.1016/j.asoc.2019.04.008
  71. Zheng G., Jing Y., Huang H., Zhang X. (2011) Multihierarchical gray evaluation method to assess building energy conservation // Journal of Energy Engineering. Vol. 137. № 2. P. 88-98. DOI:https://doi.org/10.1061/(ASCE)EY.1943-7897.0000041
  72. Zimmermann M., Darkow I.L., von der Gracht H.A. (2012) Integrating Delphi and participatory backcasting in pursuit of trustworthiness - The case of electric mobility in Germany // Technological Forecasting and Social Change. Vol. 79. № 9. P. 1605-1621. DOI:https://doi.org/10.1016/j.techfore.2012.05.016

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».