Why are Some Recommendation Systems Preferred?

Cover Page

Cite item

Abstract

There has been wide interest in exploring ways to provide more efficient personalized recommendation systems (RSs) in order to attract customers and increase product sales. The majority of the existing researches are concerned with improving the accuracy and effectiveness of the recommendation algorithms, or focusing on how to limit perceived risks, with the aim of increasing consumer satisfaction. Unlike these mentioned studies, this research begins from the perspective of customer-RS interaction, and ends in revealing the mechanisms involved in consumers’ acceptance of recommendations by using the technology acceptance model. The empirical study results show that perceived interpersonal interaction is an important factor that directly affects university students’ intentions to use RS, while perceived ease- of- use influences them in an indirect way through mediation of perceived usefulness. On this basis, the study thus provides suggestions on how to supply an improved interaction with easy and useful personalized RS.

About the authors

Gaofeng Yi

Higher Education Research Institute

Email: yigf@yctu.edu.cn
Yancheng Teachers University, Xiwang Avenue, Yancheng City 224051, Jiangsu Province, P. R. China

References

  1. Anderson J.C., Gerbing D.W. (1988) Structural equation modeling in practice: A review and recommended two-step approach // Psychological Bulletin. Vol. 103. № 3. P. 411-423.
  2. Bagozzi R.P., Phillips L.W. (1982) Representing and testing organizational theories: A holistic construal // Administrative Science Quarterly. Vol. 27. № 3. P. 459-489.
  3. Bagozzi R.P., Yi Y. (1989) On the use of structural equation models in experimental designs // Journal of Marketing Research. Vol. 26. № 3. P. 271-284.
  4. Bechwati N.N., Xia L. (2003) Do computers sweat? The impact of perceived effort of online decision aids on consumers' satisfaction with the decision process // Journal of Consumer Psychology. Vol. 13. № 1/2. P. 139-148.
  5. Bhattacherjee A., Premkumar G. (2004) Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test // MIS Quarterly. Vol. 28. № 2. P. 229-254.
  6. Bo X., Benbasat I. (2007) E-commerce product recommendation agents: Use, characteristics, and impact // MIS Quarterly. Vol. 31. № 1. P. 137-209.
  7. CNNIC (2019) The 43rd China Statistics Report on Internet Development. Beijing: China Internet Network Information Center.
  8. Carlson J., O'Cass A., Ahrholdt D. (2015) Assessing customers' perceived value of the online channel of multichannel retailers: A two country examination // Journal of Retailing & Consumer Services. Vol. 27. № 6. P. 90-102.
  9. Dabholkar P.A., Sheng X. (2012) Consumer participation in using online recommendation agents: Effects on satisfaction, trust, and purchase intentions // Service Industries Journal. Vol. 32. № 9. P. 1433-1449.
  10. Davis F.D. (1989) Perceived usefulness, perceived ease of use, and user acceptance of information technology // MIS Quarterly. Vol. 13. № 3. P. 319-340.
  11. Dodds W.B. (1991) Effects of price, brand, and store information on buyers' product evaluations // Journal of Marketing Research. Vol. 28. № 3. P. 307-319.
  12. Dong H.Z., Chang Y.P., Jian J.L., Xin L. (2014) Understanding the adoption of location-based recommendation agents among active users of social networking sites // Information Processing & Management - An International Journal. Vol. 50. № 5. P. 675-682.
  13. Fernandez-Perez V., Montes-Merino A., Rodriguez-Ariza L., Galicia P.E.A. (2019) Emotional competencies and cognitive antecedents in shaping student's entrepreneurial intention: The moderating role of entrepreneurship education // International Entrepreneurship and Management Journal. Vol. 15. № 1. P. 281-305. DOI:https://doi.org/10.1007/s11365-017-0438-7
  14. Fornell C., Larcker D.F. (1981) Evaluating structural equation models with unobservable variables and measurement error // Journal of Marketing Research. Vol. 18. № 1. P. 39-50.
  15. Gou L., You F., Guo J., Wu L. (2011) Sfviz: Interest-based friends exploration and recommendation in social networks. ACM International Conference Proceeding Series, 2011. Режим доступа:https://www.researchgate.net/publication/254003084_SFViz_Interest-based_friends_exploration_and_recommendation_in_social_networks, дата обращения 23.10.2019. DOI:https://doi.org/10.1145/2016656.2016671
  16. Hair J.F., Black B., Babin B., Anderson R.E., Tatham R.L. (2010) Multivariate data analysis (7th ed.). London: Pearson Prentice Hall.
  17. He Y., Chen Q., Kitkuakul S., Wright L.T. (2018) Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy // Cogent Business & Management. Vol. 5. № 1. P. 1-22. Режим доступа:https://www.cogentoa.com/article/.pdf, дата обращения 25.10.2019. DOI:https://doi.org/10.1080/23311975.2018.1459006
  18. Herlocker J.L., Konstan J.A., Terveen L.G., Riedl J.T. (2004) Evaluating collaborative filtering recommender systems // ACM Transactions on Information Systems. Vol. 22. № 1. P. 5-53.
  19. Hoffman D.L., Novak T.P. (1996) Marketing in hypermedia computer-mediated environments: Conceptual foundations // Journal of Marketing. Vol. 60. № 3. P. 50-68.
  20. Hsu M.H., Chang C.M., Chu K.K., Lee Y.J. (2014) Determinants of repurchase intention in online group-buying // Computers in Human Behavior. Vol. 36. Issue C. P. 234-245.
  21. IResearch (2018) China university students' consumption insight report in 2018. Beijing: IResearch.
  22. Jannach D., Zanker M., Felfernig A., Friedrich G. (2010) Recommender systems: An introduction. Cambridge: Cambridge University Press.
  23. Jeng R., Tseng S.M. (2018) The relative importance of computer self-efficacy, perceived ease-of-use and reducing search cost in determining consumers' online group-buying intention // International Journal of Human and Technology Interaction. Vol. 2. № 1. P. 1-12.
  24. Kolar T., Zabkar V. (2010) A consumer-based model of authenticity: An oxymoron or the foundation of cultural heritage marketing? // Tourism Management. Vol. 31. № 5. P. 652-664. DOI:https://doi.org/10.1016/j.tourman.2009.07.010
  25. Narver J.C., Slater S.F. (1990) The effect of a market orientation on business profitability // Journal of Marketing. Vol. 54. № 4. P. 20-35.
  26. Pereira R.E. (2001) Influence of query-based decision aids on consumer decision making in electronic commerce // Information Resources Management Journal. Vol. 14. № 1. P. 31-48.
  27. Preacher K.J., Hayes A.F. (2008) Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models // Behavior Research Methods. Vol. 40. № 3. P. 879-891.
  28. Qiang Y., Lin Z., Li Y., Shuang W., Sun T., Wang L., Chen H. (2016) Effects of product portfolios and recommendation timing in the efficiency of personalized recommendation: Effects of recommendation portfolios & timing // Journal of Consumer Behaviour. Vol. 15. № 6. P. 516-526.
  29. Resnick P., Varian H.R. (1997) Recommender systems // Communications of the ACM. Vol. 40. № 3. P. 56-58.
  30. Ricci F., Rokach L., Shapira B., Kantor P.B. (2011) Recommender Systems Handbook. Heidelberg, New York, Dordrecht, London: Springer.
  31. Roca J.C., Gagne M. (2008) Understanding e-learning continuance intention in the workplace: A self-determination theory perspective // Computers in Human Behavior. Vol. 24. P. 1585-1604.
  32. Rodrigues L.F., Oliveira A., Costa C.J. (2016) Playing seriously - how gamification and social cues influence bank customers to use gamified e-business applications // Computers in Human Behavior. Vol. 63. № 9. P. 392-407.
  33. Salton G., McGill M. (1986) An introduction to modern information retrieval. New York: McGraw-Hill.
  34. Smith A.D. (2013) Information exchanges associated with internet travel marketplaces // Online Information Review. Vol. 28. № 4. P. 292-300.
  35. Taylor A.B., Mackinnon D.P., Tein J.Y. (2008) Tests of the three-path mediated effect // Organizational Research Methods. Vol. 11. № 2. P. 241-269.
  36. Tsai M.-T., Cheng N.-C., Chen K.-S. (2011) Understanding online group buying intention: The roles of sense of virtual community and technology acceptance factors // Total Quality Management & Business Excellence. Vol. 22. № 10. P. 1091-1104. DOI:https://doi.org/10.1080/14783363.2011.614870
  37. Villegas N.M., Sanchez C., Diaz-Cely J., Tamura G. (2018) Characterizing context-aware recommender systems: A systematic literature review // Knowledge-Based Systems. Vol. 140. № 15. P. 173-200.
  38. Yi H., Chen Q., Kitkuakul S. (2018) Regulatory focus and technology acceptance: Perceived ease of use and usefulness as efficacy // Cogent Business & Management. Vol. 5. P. 1-22.
  39. Yuan S., Jeyaraj A. (2013) Information technology adoption and continuance: A longitudinal study of individuals' behavioral intentions // Information & Management. Vol. 50. № 7. P. 457-465.
  40. Zampetakis L.A., Lerakis M., Kafetsios K., Moustakis V.S. (2015) The moderating role of anticipated affective ambivalence in the formation of entrepreneurial intentions // International Entrepreneurship and Management Journal. Vol. 12. № 3. P. 815-838. DOI:https://doi.org/10.1007/s11365-015-0367-2
  41. Zhao S., Zhou M.X., Quan Y., Zhang X., Zheng W., Fu R. (2010) Who is talking about what: Social map-based recommendation for content-centric social websites // Proceedings of the 2010 ACM Conference on Recommender Systems, RecSys 2010, Barcelona, Spain, September 26-30, 2010 / Eds. X. Amatriain, M. Torrens, P.J. Resnick, M. Zanker. New York: Association for Computing Machinery. P. 143-150. DOI:https://doi.org/10.1145/1864708.1864737

Supplementary files

Supplementary Files
Action
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».