On Hilbert Spaces of Entire Functions with Unconditional Bases of Reproducing Kernels
- Autores: Isaev K.P.1,2, Yulmukhametov R.S.1,2
- 
							Afiliações: 
							- Institute of Mathematics with Computing Center, Ufa Federal Research Center
- Bashkir State University
 
- Edição: Volume 40, Nº 9 (2019)
- Páginas: 1283-1294
- Seção: Article
- URL: https://journals.rcsi.science/1995-0802/article/view/205464
- DOI: https://doi.org/10.1134/S1995080219090087
- ID: 205464
Citar
Resumo
We consider an entire function under certain conditions on the distribution of its zeros. We construct a Hilbert space of entire functions which possess unconditional basis of reproducing kernels at zeros of this function. It is proved that some known Hilbert spaces of entire functions with unconditional bases of reproducing kernels are isomorphic (as normalized spaces) to the corresponding spaces constructed by the entire functions generating the bases.
Palavras-chave
Sobre autores
K. Isaev
Institute of Mathematics with Computing Center, Ufa Federal Research Center; Bashkir State University
							Autor responsável pela correspondência
							Email: orbit81@list.ru
				                					                																			                												                	Rússia, 							Ufa, 450008; Ufa, 450076						
R. Yulmukhametov
Institute of Mathematics with Computing Center, Ufa Federal Research Center; Bashkir State University
							Autor responsável pela correspondência
							Email: yulmukhametov@mail.ru
				                					                																			                												                	Rússia, 							Ufa, 450008; Ufa, 450076						
Arquivos suplementares
 
				
			 
						 
						 
						 
						 
					 
				 
  
  
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail  Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Somente assinantes
		                                		                                        Somente assinantes
		                                					