The Three-body Problem in Riemannian Geometry. Hidden Irreversibility of the Classical Dynamical System


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The classical three-body problem is formulated as a problem of geodesic flows on a Riemannian manifold. It is proved that a curved space allows to detect new hidden symmetries of the internal motion of a dynamical system and reduces the three-body problem to the system of 6th order. It is shown that the equivalence of the original Newtonian three-body problem and the developed representation provides coordinate transformations together with an underdetermined system of algebraic equations. The latter makes the system of geodesic equations relative to the evolution parameter (internal time), i.e. to the arc length of the geodesic curve, irreversible.

Об авторах

A. Gevorkyan

Institute for Informatics and Automation Problems; Institute of Chemical Physics

Автор, ответственный за переписку.
Email: g_ashot@sci.am
Армения, Yerevan, 0014; Yerevan, 0014

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).