Numerical integration over implicitly defined domains for higher order unfitted finite element methods


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper studies several approaches to numerical integration over a domain defined implicitly by an indicator function such as the level set function. The integration methods are based on subdivision, moment–fitting, local quasi-parametrization and Monte-Carlo techniques. As an application of these techniques, the paper addresses numerical solution of elliptic PDEs posed on domains and manifolds defined implicitly. A higher order unfitted finite element method (FEM) is assumed for the discretization. In such a method the underlying mesh is not fitted to the geometry, and hence the errors of numerical integration over curvilinear elements affect the accuracy of the finite element solution together with approximation errors. The paper studies the numerical complexity of the integration procedures and the performance of unfitted FEMs which employ these tools.

Sobre autores

M. Olshanskii

Department of Mathematics

Autor responsável pela correspondência
Email: molshan@math.uh.edu
Estados Unidos da América, Houston, Texas, 77204-3008

D. Safin

Department of Mathematics

Email: molshan@math.uh.edu
Estados Unidos da América, Houston, Texas, 77204-3008

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2016