Width of the Gakhov class over the Dirichlet space is equal to 2


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Gakhov class G is formed by the holomorphic and locally univalent functions in the unit disk with no more than unique critical point of the conformal radius. Let D be the classical Dirichlet space, and let P: fF = f″/f′. We prove that the radius of the maximal ball in P(G)∩D with the center at F = 0 is equal to 2.

Об авторах

A. Kazantsev

Institute of Computational Mathematics and Information Technologies, Department of Mathematical Statistics

Автор, ответственный за переписку.
Email: kazandrey0363@rambler.ru
Россия, Kremlevskaya ul. 35, Kazan, Tatarstan, 420008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2016

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).