Generalization of the Smirnov Operator and Differential Inequalities for Polynomials


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The question raised in this article goes back to the problem posed by the famous chemist D. I. Mendeleev in 1887 (solved by A. A. Markov in 1889). In the next 100 years, the Mendeleev problem was repeatedly modificated and solved. Its essence is in the description of conditions under which the inequality ∣f(z)∣ ≤ ∣F(z)∣ for polynomials f and F and for z from a fixed set implies the inequality ∣L[f](z)∣ ≤ ∣L[F](z)∣ for some differential operator L. In the presented paper, we consider a differential operator of special type and arbitrary order. In particular, we obtain a sharp upper estimate for higher order derivatives of arbitrary polynomial in terms of the polynomial values.

Ключевые слова

Об авторах

E. Kompaneets

Petrozavodsk State University

Автор, ответственный за переписку.
Email: g_ek@inbox.ru
Россия, Petrozavodsk, 185910 Republic of Karelia

V. Starkov

Petrozavodsk State University

Автор, ответственный за переписку.
Email: VstarV@list.ru
Россия, Petrozavodsk, 185910 Republic of Karelia

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2019

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).