Investigation of Lagrange–Galerkin Method for an Obstacle Parabolic Problem


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The convergence and accuracy estimates are proved for Lagrange–Galerkin method, used for approximating the parabolic obstacle problem. The convergence analysis is based on the comparison of the solutions of Lagrange–Galerkin and backward Euler approximation schemes. First order in time step estimate for the difference of the solutions for above schemes in energy norm is proved under sufficiently weak requirements for the smoothness of the initial data. First order in time and space steps accuracy estimate for Lagrange–Galerkin method is derived in the case of discontinuous time derivative of the exact solution.

Sobre autores

R. Dautov

Institute of Computational Mathematics and Information Technologies

Autor responsável pela correspondência
Email: rafail.dautov@gmail.com
Rússia, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008

A. Lapin

Institute of Computational Mathematics and Information Technologies; Coordinated Innovation Center for Computable Modeling in Management Science Tianjin University of Finance and Economics

Email: rafail.dautov@gmail.com
Rússia, Kremlevskaya ul. 18, Kazan, Tatarstan, 420008; Tianjin, 300222


Declaração de direitos autorais © Pleiades Publishing, Ltd., 2018

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies