Numerical solution of huge-scale quasiseparable optimization problems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The paper studies approaches to numerical solving huge-scale quasiseparable optimization problems. The main idea is based on using gradient methods with simple iteration structure instead more intelligent techniques, which is widely used for solving traditional, small-sized problems. The results of numerical experiments for a number of test quasiseparable optimization problems with dimensions up to 1010 variables are presented.

Sobre autores

A. Andrianov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences

Autor responsável pela correspondência
Email: and@a5.kiam.ru
Rússia, Moscow, 125047

A. Anikin

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch

Email: and@a5.kiam.ru
Rússia, Irkutsk, 664033

I. Bychkov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch

Email: and@a5.kiam.ru
Rússia, Irkutsk, 664033

A. Gornov

Matrosov Institute for System Dynamics and Control Theory, Siberian Branch

Email: and@a5.kiam.ru
Rússia, Irkutsk, 664033

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Pleiades Publishing, Ltd., 2017