Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this paper we study the topology of the Liouville foliation for the integrable case of Euler’s equations on the Lie algebra so(4) discovered by I.V. Komarov, which is a generalization of the Kovalevskaya integrable case in rigid body dynamics. We generalize some results by A.V. Bolsinov, P.H. Richter, and A.T. Fomenko about the topology of the classical Kovalevskaya case. We also show how the Fomenko–Zieschang invariant can be calculated for every admissible curve in the image of the momentum map.

Авторлар туралы

V. Kibkalo

Lomonosov Moscow State University, GSP-1

Хат алмасуға жауапты Автор.
Email: slava.kibkalo@gmail.com
Ресей, Moscow, 119991

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Ltd., 2018