Polynomial Greatest Common Divisor as a Solution of System of Linear Equations


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

In this article we present a new algebraic approach to the greatest common divisor (GCD) computation of two polynomials based on Bezout’s identity. This approach is based on the solution of system of linear equations. Also we introduce the dmod operation for polynomials. This operation on polynomials f, g is used to reduce the degree of the larger polynomial f in a finite field Fp. This operation saves GCD(f, g). Also we present some ideas how to reduce spurious factors that arise at the procedure.

Об авторах

D. Dolgov

Department of System Analysis and Information Technologies, Institute of Computational Mathematics and Information Technologies

Автор, ответственный за переписку.
Email: Dolgov.kfu@gmail.com
Россия, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).