Moduli, capacity, BV-functions on the Riemann surfaces


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Let R is a Riemann surface, glued from finitely or countably many domains in the extended complex plane so that the following conditions are satisfied: each point in R projects onto a point w = prW in one on the glued domains, each point in R has a neighbourhood which is a univalent disk, or multivalent disk with the unique ramification point at the centre of disk. We study elementary properties of functions of bounded variation and sets of finite perimeter in an open set QR {WR: W is a ramification point or prW = ∞}. Further, by using Ziemer’s technique, we obtain the main result

\(C\left( {{F_{0,}}{F_1},G} \right) \cdot M\left( {{F_{0,}}{F_1},G} \right) = 1\)
. Here G is an open set with the compact closure on R, F0 and F1 are disjoint compact sets in the closure of G, C(F0, F1, G) is the conformal capacity of the condenser (F0, F1, G), M(F0, F1, G) is the conformal module of the family of all curves that separate F0 from F1 in G.

Об авторах

P. Pugach

Department of Computer Science and Customs Information Technologies

Автор, ответственный за переписку.
Email: 679097@mail.ru
Россия, ul. Strelkovaya 16B, Vladivostok, 690034

V. Shlyk

Department of Computer Science and Customs Information Technologies

Email: 679097@mail.ru
Россия, ul. Strelkovaya 16B, Vladivostok, 690034

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).