🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Phase Flows Generated by Cauchy Problem for Nonlinear Schrödinger Equation and Dynamical Mappings of Quantum States


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We consider the transformation of the initial data space for the Schrödinger equation. The transformation is generated by nonlinear Schrödinger operator on the segment [−π, π] satisfying the homogeneous Dirichlet conditions on the boundary of the segment. The potential here has the type \(\xi(u)=\left(1+|u|^{2}\right)^{\frac{p}{2}} u\), where u is an unknown function, p ≥ 0. The Schrödinger operator defined on the Sobolev space \(H_0^2([-\pi, \pi])\) generates a vector field \({\rm{v}}:H_0^2([-\pi, \pi])\rightarrow{H}\equiv{L_2}(-\pi, \pi)\). First, we study the phenomenon of global existence of a solution of the Cauchy problem for p ∈ [0, 4) and, second, the phenomenon of rise of a solution gradient blow up during a finite time for p ∈ [4, +∞). In second case we study qualitative properties of a solution when it approaches to the boundary of its interval of existence. Moreover, we define a solution extension through the moment of a gradient blow up using both the one-parameter family of multifunctions and the one-parameter family of probability measures on the initial data space of the Cauchy problem. We show that this extension describes the destruction of a solution as the destruction of a pure quantum state and the transition from the set of pure quantum states into the set of mixed quantum states.

作者简介

L. Efremova

National Research Nizhny Novgorod State University; Moscow Institute of Physics and Technology

编辑信件的主要联系方式.
Email: lefunn@gmail.com
俄罗斯联邦, Nizhny Novgorod, 603950; Dolgoprudny, 141701

A. Grekhneva

Gromov Flight Research Institute (GFRI)

编辑信件的主要联系方式.
Email: alice-prohorses@yandex.ru
俄罗斯联邦, Zhukovskii, 140180

V. Sakbaev

Moscow Institute of Physics and Technology; National Research Nizhny Novgorod State University

编辑信件的主要联系方式.
Email: fumi2003@mail.ru
俄罗斯联邦, Dolgoprudny, 141701; Nizhny Novgorod, 603950

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019