Paranormal Measurable Operators Affiliated with a Semifinite von Neumann Algebra


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let M be a von Neumann algebra of operators on a Hilbert space H, τ be a faithful normal semifinite trace on M. We define two (closed in the topology of convergence in measure τ) classes P1 and P2 of τ-measurable operators and investigate their properties. The class P2 contains P1. If a τ-measurable operator T is hyponormal, then T lies in P1; if an operator T lies in Pk, then UTU* belongs to Pk for all isometries U from Mand k = 1, 2; if an operator T from P1 admits the bounded inverse T−1 then T−1 lies in P1. If a bounded operator T lies in P1 then T is normaloid, Tn belongs to P1 and a rearrangement μt(Tn) ≥ μt(T )n for all t > 0 and natural n. If a τ-measurable operator T is hyponormal and Tn is τ-compact operator for some natural number n then T is both normal and τ-compact. If an operator T lies in P1 then T 2 belongs to P1. If M= B(H) and τ = tr, then the class P1 coincides with the set of all paranormal operators onH. If a τ-measurable operator A is q-hyponormal (1 ≥ q > 0) and |A*| ≥ μ∞(A)I then Ais normal. In particular, every τ-compact q-hyponormal (or q-cohyponormal) operator is normal. Consider a τ-measurable nilpotent operator Z ≠ 0 and numbers a, bR. Then an operator Z*ZZZ* + aRZ + bSZ cannot be nonpositive or nonnegative. Hence a τ-measurable hyponormal operator Z ≠ 0 cannot be nilpotent.

About the authors

A. M. Bikchentaev

N.I. Lobachevskii Institute ofMathematics and Mechanics

Author for correspondence.
Email: Airat.Bikchentaev@kpfu.ru
Russian Federation, ul. Kremlevskaya 18, Kazan, Tatarstan, 420008


Copyright (c) 2018 Pleiades Publishing, Ltd.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies