🔧На сайте запланированы технические работы
25.12.2025 в промежутке с 18:00 до 21:00 по Московскому времени (GMT+3) на сайте будут проводиться плановые технические работы. Возможны перебои с доступом к сайту. Приносим извинения за временные неудобства. Благодарим за понимание!
🔧Site maintenance is scheduled.
Scheduled maintenance will be performed on the site from 6:00 PM to 9:00 PM Moscow time (GMT+3) on December 25, 2025. Site access may be interrupted. We apologize for the inconvenience. Thank you for your understanding!

 

Some properties of Fox’s derivations for Lie algebras


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Let F be a free sum of Lie algebras Ai(iI) and a free Lie algebra G with basis {gj|jJ{ and its ideal N has trivial intersection with each summand Ai. Let U(F) be the universal enveloping algebra of F, NU the ideal in U(F) which is generated by N. In this paper we describe an elements v of the algebra F, such that Dl(v) ≡0 mod NU, where l belongs to a subset of IJ and Dk: U(F) → U(F)(kIJ) are the Fox derivations of the universal enveloping algebra U(F). Using obtained description, we prove a theorems on freedom.

About the authors

A. F. Krasnikov

Omsk State University

Author for correspondence.
Email: phomsk@mail.ru
Russian Federation, pr. Mira 55-A, Omsk, 644077

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.