Features of approximation of finite-element models of transpedicular spinal fixation and their computational efficiency

Cover Page

Cite item

Full Text

Abstract

The work investigates the method of transpedicular fixation (TPF), which is widely used at present in the surgical treatment of various spinal pathologies. The technique allows for correction of deformations and stabilization of the spinal column, while the layout and extent of the metal structure are determined by the nosology and preferences of the surgeon. Biomechanics methods, including computer modeling and numerical calculations, were used to assess the stress-strain state of one of the TPF variants. The purpose of the study was to conduct a comparative assessment of the simplified PTK model with the results of standard modeling, and to substantiate the validity of the proposed approximation method for further scientific research. The main objective of the study was to create three-dimensional models of spinal-motor segments and the transpedicular system (TPS), followed by the calculation of their stress-strain state under compression load using the finite element method (FEM). The simulation was performed in SolidWorks Simulation using static analysis to determine stresses and deformations. The study examined a biomechanical model of the lumbar (L1–L5) spine of a patient at the Scientific Research Institute of Traumatology, Orthopedics and Neurosurgery of the Saratov State Medical Uni-versity named after V.I. Razumovsky. Special attention is paid to the balance between the accuracy of the geometric representation of the model and computational efficiency, as well as possible errors associated with sampling and approximation. The results of the study showed that the maximum equivalent stresses arising from a 400 KN load on the lumbar spine in a solid-state non-polygonal model exceed the stresses in the polygonal model by no more than 7–10 %, which is sufficient to assert the possibility of estimating the VAT of spinal segments using a simplified model.

About the authors

Aleksey E. Shulga

Saratov State Medical University named after V.I. Razumovsky

Author for correspondence.
Email: doc.shulga@yandex.ru
ORCID iD: 0000-0001-8476-0231

MD, PhD in Medical Sciences, Researcher of the Department of Innovative Projects in Neurosurgery and Vertebrology, Research Institute of Traumatology, Orthopedics and Neurosurgery

Russian Federation, Saratov

Mikhail S. Korolev

Saratov State Technical University named after Yuri Gagarin

Email: koroliow.mikhail@yandex.ru
ORCID iD: 0000-0002-4901-4468

PhD in Technical Sciences, Associate Professor of the Department of Applied Information Technologies

Russian Federation, Saratov

Sergey P. Ivzhenko

Saratov State Technical University named after Yuri Gagarin

Email: sarvizir@mail.ru
ORCID iD: 0000-0002-9531-5536

PhD in Physics and Mathematics, Associate Professor at the Department of Information and Communication Systems and Software Engineering

Russian Federation, Saratov

Daniil M. Puchinyan

Saratov State Medical University named after V.I. Razumovsky

Email: puchinyan@mail.ru
ORCID iD: 0000-0001-9515-8342

MD, DSc Med, Professor, Researcher of the Department of Innovative Projects in Traumatology and Ortopedics, Research Institute of Traumatology, Orthopedics and Neurosurgery

Russian Federation, Saratov

Vladimir S. Tolkachev

Saratov State Medical University named after V.I. Razumovsky

Email: vladimir.tolkache@yandex.ru
ORCID iD: 0000-0001-6580-4403

MD, Junior Researcher, Department of Innovative Projects for Neurosurgery and Vertebrology, Research Institute of Traumatology, Orthopedics and Neurosurgery

Russian Federation, Saratov

Stanislav D. Shuvalov

Saratov State Medical University named after V.I. Razumovsky

Email: shuvalov.stan@yandex.ru
ORCID iD: 0000-0002-8095-9398

MD, Junior Researcher, Department of Innovative Projects for Neurosurgery and Vertebrology, Research Institute of Traumatology, Orthopedics and Neurosurgery

Russian Federation, Saratov

References

  1. Borzykh K.O., Rerikh V.V., Borin V.V. Complications of the treatment of post-traumatic deformities of the thoracic and lumbar spine using staged surgical interventions. Khirurgiya Pozvonochnika = Russian Journal of Spine Surgery. 2020;17(1):6–14. (In Russ.) doi: 10.14531/ss2020.1.6-14.
  2. Tahal D., Madhavan K., Chieng L.O., Ghobrial G.M., Wang M.Y. Metals in Spine. World Neurosurgery. 2017;100:619–627. doi: 10.1016/j.wneu.2016.12.105.
  3. Alpízar-Aguirre A., González-Carbonell R.A., Ortiz-Prado A., Jacobo-Armendáriz V.H. Biomecánica de la interfaz hueso-tornilloen instrumentación transpedicular de columna (Biomechanics of the bone-screw interface in transpedicular spinal instrumentation). Acta ortopédica mexicana. 2022;36(3):172–178. (In Span.) doi: 10.35366/109693.
  4. Arora A., Sharfman Z.T., Clark A.J, Theologis A.A. Proximal Junctional Kyphosis and Failure: Strategies for Prevention. Neurosurgery Clinics of North America. 2023;34(4):573–584. doi: 10.1016/j.nec.2023.06.004.
  5. Baikov E.S., Peleganchuk A.V., Sanginov A.J., Leonova O.N., Krutko A.V. Correction of sagittal imbalance after previous surgical interventions for degenerative lumbar spine disease. Khirurgiya Pozvonochnika = Russian Journal of Spine Surgery. 2022;19(2):47–56. (In Russ.) doi: 10.14531/ss2022.2.47-56.
  6. Yagi M., Yamanouchi K., Fujita N., Funao H., Ebata S. Proximal Junctional Failure in Adult Spinal Deformity Surgery: An In-depth Review. Neurospine. 2023;20(3):876–889. doi: 10.14245/ns.2346566.283.
  7. Leszczynski A., Meyer F., Charles Y.P., Deck C., Willinger R. Development of a flexible instrumented lumbar spine finite element model and comparison with in-vitro experiments. Computer Methods in Biomechanics and Biomedical Engineering. 2022;25(2):221–237. doi: 10.1080/10255842.2021.1948021.
  8. Bate K.-Yu. Finite element methods. Edited by L.I. Turchak. Moscow; Fizmatlit, 2010. 1022 p. (In Russ.).
  9. Andreev A.V., Usov M.A., Vissarionov S.V. Modern approaches to the design and manufacture of orthopedic implants for the treatment of spinal de-formities in children. Ortopedija, travmatologija i vosstanovitel'naja hirurgija detskogo vozrasta = Orthopedics, traumatology, and reconstructive surgery in childhood. 2019;7(3):61–72. (In Russ.) doi: 10.17816/PTORS7361-72
  10. Shulga A.E., Ulyanov V.Yu., Rozhkova Yu.Yu., Shuvalov S.D. Finite element modeling of anatomical constitutional types of the lumbar spine and pelvis (Roussouly) for study of the biomechanical aspects. Genij Ortopedii = Orthopedic Genius. 2025;31(3):297–306. (In Russ.) doi: 10.18019/1028-4427-2025-31-3-297-306.
  11. Laouissat F., Sebaaly A., Gehrchen M., Roussouly P. Classification of normal sagittal spine alignment: refounding the Roussouly classification. European Spine Journal. 2018;27(8):2002–2011. doi: 10.1007/s00586-017-5111-x.
  12. Sebaaly A., Gehrchen M., Silvestre C., Kharrat K., Bari T., Kreichati G., et al. Mechanical complications in adult spinal deformity and the effect of restoring the spinal shapes according to the Roussouly classification: a multicentric study. European Spine Journal. 2020;29(4):904–913. doi: 10.1007/s00586-019-06253-1.
  13. Muslov S.A., Arutyunov S.D., Sukhochev P.Yu., Chizhmakov E.A. Calculation of parameters of elastic and hyperelastic models of facial skin. Izvestija Saratovskogo universiteta. Novaja serija. Serija: Matematika. Mehanika. Informatika = Izvestiya of Saratov University. Mathematics. Mechanics. Informatics. 2025;25(1):91–105. (In Russ.) doi: 10.18500/1816-9791-2025-25-1-91-105.
  14. Grigor’ev A.I., Volozhin A.I., Stupakov G.P. Mineral metabolism in humans under altered gravity. Problems of Space Biology. Ed. by Yu. V. Natochin. Moscow; Nauka, 1962. 215 p. (In Russ.).
  15. Berezovskij V.A., Kolotilov N.N. Biophysical characteristics of human tissues: Guidebook. Kiev; Nauk. Dumka, 1990. 222 p. (In Russ.).
  16. Chumachenko E.N., Logashina I.V. Calculation of the straindeformation condition of the spinal motor segment during loading. Aviakosmicheskaja i jekologicheskaja medicina = Aerospace and Environmental Medicine. 2014;48(5):51–57. (In Russ.).
  17. Nikkhoo M., Khoz Z., Cheng C.H., Niu C.C., El-Rich M., Khalaf K. Development of a novel geometrically-parametric patient-specific finite element model to investigate the effects of the lumbar lordosis angle on fusion surgery. Journal of biomechanics. 2020;102:109722. doi: 10.1016/j.jbiomech.2020.109722.
  18. Landinez D., Rodríguez C.F., Cifuentes-De la Portilla C. Patient-specific spine digital twins: a computational characterization of the idiopathic scoliosis. Journal of orthopaedic surgery and research. 2025;20(1):39. doi: 10.1186/s13018-024-05417-0.
  19. Xu M., Yang J., Lieberman I.H., Haddas R. Finite element method-based study of pedicle screw-bone connection in pullout test and physiological spinal loads. Medical engineering & physics. 2019;67:11–21. doi: 10.1016/j.medengphy.2019.03.004.
  20. Nikkhoo M., Lu M.L., Chen W.C., Fu C.J., Niu C.C., Lin Y.H. et al. Biomechanical investigation between rigid and semirigid posterolateral fixation during daily activities: geometrically parametric poroelastic finite element analyses. Frontiers in bioengineering and biotechnology. 2021;9:646079. doi: 10.3389/fbioe.2021.646079.
  21. Laville A., Laporte S., Skalli W. Parametric and subject-specific finite element modelling of the lower cervical spine. Influence of geometrical parameters on the motion patterns. Journal of biomechanics. 2009;42(10):1409–1415. doi: 10.1016/j.jbiomech.2009.04.007.
  22. Nikkhoo M., Chen W.C., Lu M.L., Fu C.J., Niu C.C., Lien H.Y. et al. Anatomical parameters alter the biomechanical responses of adjacent segments following lumbar fusion surgery: Personalized poroelastic finite element modelling investigations. Frontiers in bioengineering and biotechnology. 2023;11:1110752. doi: 10.3389/fbioe.2023.1110752.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Shulga A.E., Korolev M.S., Ivzhenko S.P., Puchinyan D.M., Tolkachev V.S., Shuvalov S.D.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).