Retinal microglia: physiological role and participation in pathological processes (review)
- Authors: Ruchkin M.P.1,2, Markelova E.V.3, Fedyashev G.A.1,2
-
Affiliations:
- Pacific State Medical University
- Primorskii center of eye microsurgery
- Pacific state medical university
- Issue: Vol 22, No 4 (2025)
- Pages: 26-34
- Section: Review Articles
- URL: https://journals.rcsi.science/1994-9480/article/view/375642
- DOI: https://doi.org/10.19163/1994-9480-2025-22-4-26-34
- ID: 375642
Cite item
Full Text
Abstract
Relevance: Microglial cells are resident macrophages of the retina and play a key role in maintaining its homeostasis. The dual nature of these cells as factors in the normal development and functioning of nervous tissue, on the one hand, and their participation in the pathogenesis of various neurodegenerative processes, on the other, determines the relevance of studying the contribution of this component of innate immunity to the development and progression of pathological processes in the retina.
The purpose of the study is to analyze the literature data and summarize the most significant aspects of the functioning of microglia in physiological conditions and in some retinal diseases.
Results of the study: during the analysis of literature data, the features of the functioning of microglia cells in a healthy retina were shown, as well as in diseases such as age-related macular degeneration, glaucoma and diabetic retinopathy.
Conclusion: Microglia plays an important dual role in the retina, participating both in maintaining its normal functioning and in the development of pathological processes. In this regard, the most promising therapeutic strategies seem to be those that are aimed not at completely blocking microglial activity, but at modulating its pro-inflammatory reactions and increasing neuroprotective potential.
About the authors
Mikhail P. Ruchkin
Pacific State Medical University; Primorskii center of eye microsurgery
Author for correspondence.
Email: michaelr-n@mail.ru
ORCID iD: 0000-0002-8966-3120
Candidate of Medical Sciences, Senior Lecturer at the Department of Ophthalmology and Otorhinolaryngology, Ophthalmologist
Russian Federation, Vladivostok; VladivostokElena V. Markelova
Pacific state medical university
Email: markev2010@mail.ru
MD, Professor, Head of the Department of Normal and Pathological Physiology
Russian Federation, VladivostokGleb A. Fedyashev
Pacific State Medical University; Primorskii center of eye microsurgery
Email: fediashev@mail.ru
ORCID iD: 0000-0003-2440-6059
MD, Associate Professor, Head of the Department of Ophthalmology and Otorhinolaryngology, Chief Physician
Russian Federation, VladivostokReferences
- Hoon M., Okawa H., Santina L.C., Wong R. Functional architecture of the retina: Development and disease. Progress in Retinal and Eye Research. 2014;42:44–84. doi: 10.1016/j.preteyeres.2014.06.003.
- Vecino E., Rodriguez F.D., Ruzafa N., Pereiro X., Sharma S.C. Glia – neuron interactions in the mammalian retina. Progress in Retinal and Eye Research. 2016;51:1–40. doi: 10.1016/j.preteyeres.2015.06.003.
- Goldman D. Müller glial cell reprogramming and retina regeneration. Nature Reviews Neuroscience. 2014;15:431–42. doi: 10.1038/nrn3723.
- Fernández-Sánchez L., Lax P., Campello L., Pinilla I., Cuenca N. Astrocytes and Müller cell alterations during retinal degeneration in a transgenic rat model of retinitis pigmentosa. Frontiers in Cellular Neuroscience. 2015;9:484. doi: 10.3389/fncel.2015.00484.
- Rashid K., Akhtar-Schaefer I., Langmann T. Microglia in retinal degeneration. Frontiers in Immunology. 2019;10:1975. doi: 10.3389/fimmu.2019.01975.
- Wang S.K., Cepko C.L. Targeting microglia to treat degenerative eye diseases. Frontiers in Immunology. 2022;13:843558. doi: 10.3389/fimmu.2022.843558.
- Li X., Yu Z., Li H., Yuan Y., Gao X., Kuang H. Retinal microglia polarization in diabetic retinopathy. Visual Neuroscience. 2021;38:E006. doi: 10.1017/S0952523821000031.
- Huang Y., Xu Z., Xiong S., Qin G., Sun F., Yang J. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discovery. 2018;4:9. doi: 10.1038/s41421-018-0011-8
- Zhang Y., Zhao L., Wang X., Ma W., Lazere A., Qian H. Repopulating retinal microglia restore endogenous organization and function under CX3CL1-CX3CR1 regulation. Science Advances. 2018;4:eaap8492. doi: 10.1126/sciadv.aap8492.
- Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74:691–705. doi: 10.1016/j.neuron.2012.03.026.
- Wang X., Zhao L., Zhang J., Fariss R.N., Ma W., Kretschmer F. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. Journal of Neuroscience. 2016;36:2827–42. doi: 10.1523/JNEUROSCI.3575-15.2016.
- Kierdorf K., Prinz M. Factors regulating microglia activation. Frontiers in Cellular Neuroscience. 2013;7:44. doi: 10.3389/fncel.2013.00044.
- Huang R., Lan Q., Chen L., Zhong H., Cui L., Jiang L. CD200Fc attenuates retinal glial responses and RGCs apoptosis after optic nerve crush by modulating CD200/CD200R1 interaction. Journal of Molecular Neuroscience. 2018;64:200–10. doi: 10.1007/s12031-017-1020-z.
- Karlstetter M., Kopatz J., Aslanidis A., Shahraz A., Caramoy A., Linnartz-Gerlach B. Polysialic acid blocks mononuclear phagocyte reactivity, inhibits complement activation, and protects from vascular damage in the retina. EMBO Molecular Medicine. 2017;9:154–66. doi: 10.15252/emmm.201606627.
- Linnartz-Gerlach B., Mathews M., Neumann H. Sensing the neuronal glycocalyx by glial sialic acid binding immunoglobulin-like lectins. Neuroscience. 2014;275:113–24. doi: 10.1016/j.neuroscience.2014.05.061.
- Huang L., Xu W., Xu G. Transplantation of CX3CL1-expressing mesenchymal stem cells provides neuroprotective and immunomodulatory efects in a rat model of retinal degeneration. Ocular Immunology Inflammation. 2013;21:276–85. doi: 10.3109/09273948.2013.791925.
- Zabel M.K., Zhao L., Zhang Y., Gonzalez S.R., Ma W., Wang X. Microglial phagocytosis and activation underlying photoreceptor degeneration is regulated by CX3CL1-CX3CR1 signaling in a mouse model of retinitis pigmentosa. Glia. 2016;64:1479–91. doi: 10.1002/glia.23016.
- Zhao N., Hao X.N., Huang J.M., Song Z.M., Tao Y. Crosstalk between microglia and Müller glia in the age-related macular degeneration: role and therapeutic value of neuroinflammation. Aging Diseases. 2024;15(3):1132-1154. doi: 10.14336/AD.2023.0823-3.
- Gupta N., Shyamasundar S., Patnala R., Karthikeyan A., Arumugam T.V., Ling E. Recent progress in therapeutic strategies for microglia-mediated neuroinflammation in neuropathologies. Expert Opinion in Therapeutic Targets. 2018;22:765–81. doi: 10.1080/14728222.2018.1515917
- Bellver-Landete V., Bretheau F., Mailhot B., Vallières N., Lessard M., Janelle M. Microglia are an essential component of the neuroprotective scar that forms after spinal cord injury. Nature Communications. 2019;10:518. doi: 10.1038/s41467-019-08446-0
- Madeira M.H., Boia R., Santos P.F., Ambrósio A.F., Santiago A.R. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators of Inflammation. 2015;2015:673090. doi: 10.1155/2015/673090
- Karlstetter M., Ebert S., Langmann T. Microglia in the healthy and degenerating retina: insights from novel mouse models. Immunobiology. 2010;215:685–91. doi: 10.1016/j.imbio.2010.05.010
- Vyawahare H., Shinde P. Age-related macular degeneration: epidemiology, pathophysiology, diagnosis, and treatment. Cureus. 2022;14(9):e29583. doi: 10.7759/cureus.29583.
- Deng Y., Qiao L., Du M., Qu C., Wan L., Li J., Huang L. Age-related macular degeneration: epidemiology, genetics, pathophysiology, diagnosis, and targeted therapy. Genes & Diseases. 2022;9(1):62–79. doi: 10.1016/j.gendis.2021.02.009.
- Chichagova V., Hallam D., Collin J., Zerti D., Dorgau B., Felemban M. Cellular regeneration strategies for macular degeneration: past, present and future. Eye. 2018;32:946–71. doi: 10.1038/s41433-018-0061-z.
- Taskintuna I., Elsayed M., Schatz P. Update on clinical trials in dry age-related macular degeneration. Middle East African Journal of Ophthalmology. 2016;23:13–26. doi: 10.4103/0974-9233.173134
- Schick T., Steinhauer M., Aslanidis A., Altay L., Karlstetter M., Langmann T. Local complement activation in aqueous humor in patients with age-related macular degeneration. Eye. 2017;31:810–3. doi: 10.1038/eye.2016.328.
- Jonas J.B., Tao Y., Neumaier M., Findeisen P. Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmologica. 2012;90:e381–8. doi: 10.1111/j.1755-3768.2012.02414.
- Garg A., Nanji K., Tai F., Phillips M., Zeraatkar D., Garg S. et al. The effect of complement C3 or C5 inhibition on geographic atrophy secondary to age-related macular degeneration: A living systematic review and meta-analysis. Survey of Ophthalmology. 2024; 69(3):349–361. doi: 10.1016/j.survophthal.2023.11.008.
- Nebel C., Aslanidis A., Rashid K., Langmann T. Activated microglia trigger inflammasome activation and lysosomal destabilization in human RPE cells. Biochemical and Biophysical Research Communications. 2017;484:681–6. doi: 10.1016/j.bbrc.2017.01.176.
- Tseng W.A., Thein T., Kinnunen K., Lashkari K., Gregory M.S., D’Amore P.A. NLRP3 inflammasome activation in retinal pigment epithelial cells by lysosomal destabilization: implications for age-related macular degeneration. Investigation Opthalmology Visual Sciences. 2013;54:110–20. doi: 10.1167/iovs.12-10655.
- Zheng X., Wan J., Tan G. The mechanisms of NLRP3 inflammasome/pyroptosis activation and their role in diabetic retinopathy. Frontiers in Immunology. 2023;14:1151185. doi: 10.3389/fimmu.2023.1151185.
- Krantz M., Eklund D., Särndahl E., Hedbrant A. A detailed molecular network map and model of the NLRP3 inflammasome. Frontiers in Immunology. 2023;14:1233680. doi: 10.3389/fimmu.2023.1233680.
- Нероев В.В., Михайлова Л.А., Малишевская Т.Н., Петров С.Ю., Филиппова О.М. Эпидемиология глаукомы в Российской Федерации. Российский офтальмологический журнал. 2024;17(3):7–12. doi: 10.21516/2072-0076-2024-17-3-7-12.
- Trivli A., Koliarakis I., Terzidou C., Goulielmos G.N., Siganos C.S, Spandidos D.A. et al. Normal-tension glaucoma: Pathogenesis and genetics. Experimental and therapeutic medicine. 2019;17(1):563–574. doi: 10.3892/etm.2018.7011.
- Гндоян И.А., Кузнецова Н.А., Куштарева Л.Б. Мониторинг некоторых морфометрических показателей зрительного нерва и сетчатки у лиц без глаукомы и пациентов с первичной открытоугольной глауокмой в условиях использования различных видов очковой коррекции. Вестник Волгоградского государственного медицинского университета. 2024;21(3):48–54. doi: 10.19163/1994-9480-2024-21-3-48-54.
- Vishwaraj C.R., Srinivasan K., Rengaraj V., Garg S.A., Premanand C., Shweta T. Neuroprotection in glaucoma. Indian Journal of Ophthalmology. 2022;70(2):380–385. doi: 10.4103/ijo.IJO_1158_21.
- Vernazza S., Tirendi S., Bassi A.M., Traverso C.E., Saccà S.C. Neuroinflammation in Primary Open-Angle Glaucoma. Journal of Clinical Medicine. 2020;9(10):3172. doi: 10.3390/jcm9103172.
- Chua J., Vania M., Cheung C.M., Ang M., Chee S.P., Yang H. Expression profile of inflammatory cytokines in aqueous from glaucomatous eyes. Mol Vis. 2012;18:431–8.
- Черных В.В., Коненков В.И., Ермакова О.В., Орлов Н.Б., Обухова О.О., Еремина А.В. и др. Содержание цитокинов и факторов роста во внутриглазной жидкости у пациентов с первичной открытоугольной глаукомой. Бюллетень сибирской медицины. 2019;18(1):257–265. doi: 10.20538/1682-0363-2019-1-257-265.
- Zeng H.L., Shi J.M. The role of microglia in the progression of glaucomatous neurodegeneration- a review. International Journal of Ophthalmology. 2018;11:143–9. doi: 10.18240/ijo.2018.01.22.
- Ishikawa M., Yoshitomi T., Zorumski C.F., Izumi Y. Experimentally induced mammalian models of Glaucoma. Biomed Research International. 2015;2015:281214. doi: 10.1155/2015/281214.
- Bosco A., Steele M.R., Vetter M.L. Early microglia activation in a mouse model of chronic glaucoma. Journal of Comparative Neurology. 2011;519:599–620. doi: 10.1002/cne.22516.
- Roh M., Zhang Y., Murakami Y., Thanos A., Lee S.C., Vavvas D.G. Etanercept, a widely used inhibitor of tumor necrosis factor-α (TNF-α), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS ONE. 2012;7:e40065. doi: 10.1371/journal.pone.0040065.
- Echevarria F.D., Formichella C.R., Sappington R.M. Interleukin-6 deficiency attenuates retinal ganglion cell axonopathy and glaucoma-related vision loss. Frontiers in Neuroscience. 2017;11:318. doi: 10.3389/fnins.2017.00318.
- Echevarria F.D., Rickman A.E., Sappington R.M. Interleukin-6: a constitutive modulator of glycoprotein 130, neuroinflammatory and cell survival signaling in retina. Journal of Clinical and Cellular Immunology. 2016;7:439. doi: 10.4172/2155-9899.1000439.
- Ghasemi H. Roles of IL-6 in Ocular Inflammation: A Review. Ocular Immunology and Inflammation. 2017;26(1):37–50. doi: 10.1080/09273948.2016.1277247.
- Saraiva M., Vieira P., O’garra A. Biology and therapeutic potential of interleukin-10. Journal of Experimental Medicine. 2019;217(1):e20190418. doi: 10.1084/jem.20190418.
- Ulhaq Z.S., Soraya G.V., Hasan Y.T. Serum IL-6/IL-10 ratio as a biomarker for the diagnosis and severity assessment of primary-open angle glaucoma. European Journal of Ophthalmology. 2021;32(4):2259–2264. doi: 10.1177/11206721211037133.
- Нероев В.В., Зайцева О.В., Михайлова Л.А. Распространенность диабетической ретинопатии в Российской Федерации по данным федеральной статистики. Российский офтальмологический журнал. 2023;16(3):7–11. doi: 10.21516/2072-0076-2023-16-3-7-11.
- Bianco L., Arrigo A., Aragona E., Antropoli A., Berni A., Saladino A., Bandello F. Neuroinflammation and neurodegeneration in diabetic retinopathy. Frontiers in Aging Neuroscience. 2022;14:937999. doi: 10.3389/fnagi.2022.937999.
- Mason R.H., Minaker S.A., Lahaie Luna G., Bapat P., Farahvash A., Garg A. et al. Changes in aqueous and vitreous inflammatory cytokine levels in proliferative diabetic retinopathy: a systematic review and meta-analysis. Eye. 2022;2022:1–51. doi: 10.1038/s41433-022-02127-x.
- Билецкая В.А., Липатов Д.В., Саяпина И.Ю., Фролов М.А., Сургуч В.К. Маркеры пролиферативной диабетической ретинопатии. Офтальмология. 2022;19(3): 557–564. doi: 10.18008/1816-5095-2022-3-557-564.
- Fragiotta S., Pinazo-Durán M.D., Scuderi G. Understanding neurodegeneration from a clinical and therapeutic perspective in early diabetic retinopathy. Nutrients. 2022;14(4);792. doi: 10.3390/nu14040792.
- Ручкин М.П., Маркелова Е.В., Федяшев Г.А. Роль нейропептидов в развитии нейродегенерации сетчатки при диабетической ретинопатии. Тихоокеанский медицинский журнал. 2022;3:32–35. doi: 10.34215/1609-1175-2022-3-32-35.
- Ручкин М.П., Маркелова Е.В., Федяшев Г.А., Ющук В.Н. Роль цитокинов, нейропептидов и матриксных металлопротеиназ в иммунопатогенезе нейродегенерации сетчатки при диабетической ретинопатии. Российский иммунологический журнал. 2022;25(4):515–520. doi: 10.46235/1028-7221-1157-ROC.
Supplementary files

