Klotho protein as a marker and target for the development of strategies to identify agents that slow aging and the progression of age-related diseases

Cover Page

Cite item

Full Text

Abstract

There is a steady increase in life expectancy and in the number of elderly individuals worldwide. Aging is associated with the rise of age-related diseases and multimorbidity and therefore has become a major medical, social, and economic challenge for the state. This imposes new tasks on the healthcare system, social support services, and the state as a whole, aimed at ensuring healthy and active longevity and at developing new health-preserving technologies and strategies. Multiple pathophysiological processes underlie aging and the development of age-related diseases: oxidative stress, chronic low-grade inflammation, mitochondrial dysfunction, reduced autophagy, accumulation of damage to proteins and subcellular and cellular structures, and a decline in the functional capacity of organs and systems. All of this stimulates the development of new strategies for maintaining healthy and active longevity through agents exerting polyvalent effects on the main pathophysiological mechanisms of age-associated changes. The discovery of the gene responsible for the synthesis of the protein that slows aging, named after the goddess who spins the thread of life-Klotho-sparked great interest among biologists and specialists in theoretical and clinical medicine. The geroprotective action is based on the inhibition of four pathways: 1) insulin-like growth factor-1 of the Klotho protein (IGF-1), 2) transforming growth factor-β1 (TGF-β1), 3) Wnt and 4) nuclear transcription factor (NF-κB). Their activation is associated with inflammation, oxidative and nitrosative stress, reduced autophagy, immune dysfunction, mitochondrial dysfunction, neoplasia, cellular senescence, apoptosis and premature cell death, a decline in the morphofunctional reserves of various organs and systems, and reduced adaptive mechanisms and resistance of the organism to adverse external and internal factors. The review provides a concise description of the anti-aging protein Klotho, considers its biological activity and the dynamics of its serum levels depending on age and on the functional state of the organism under normal and pathological conditions. It is shown that its serum level can be increased by certain medicinal agents and by adherence to healthy lifestyle factors, including work-rest balance, regular physical activity and sports, diet, healthy sleep, and others.

Conclusions: The Klotho protein plays an important role in the regulation of aging processes and the development of age-related diseases and therefore may serve as a target for the search and development of medicinal agents that increase its production for the prevention of early aging and the treatment of age-associated pathologies. The multifunctional Klotho protein may represent a new and economically justified biomarker of aging and an integral tool for qualitative and quantitative assessment of lifestyle, biological age, and overall health status.

About the authors

Ivan N. Tyurenkov

Volgograd State Medical University

Author for correspondence.
Email: fibfuv@mail.ru
ORCID iD: 0000-0001-7574-3923

holder of an Advanced Doctorate (Doctor of Science) in Medical Sciences, Professor

Russian Federation, Volgograd

References

  1. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. The hallmarks of aging. Cell. 2013;153(6):1194–217. doi: 10.1016/j.cell.2013.05.039.
  2. Borsky P., Holmannova D., Andrys C., Kremlacek J., Fiala Z., Parova H., et al. Evaluation of potential aging biomarkers in healthy individuals: telomerase, AGEs, GDF11/15, sirtuin 1, NAD+, NLRP3, DNA/RNA damage, and klotho. Biogerontology. 2023;24(6):937–955. doi: 10.1007/s10522-023-10054-x.
  3. Москалев А.А. Молекулярные биомаркеры старения для превентивной медицины. Вестник восстановительной медицины. 2017;16(1):18–29. URL: https://journals.eco-vector.com/2078-1962/article/view/609274.
  4. López-Otín C., Blasco M.A., Partridge L., Serrano M., Kroemer G. Hallmarks of aging: An expanding universe. Cell. 2023;186(2):243–278. doi: 10.1016/j.cell.2022.11.001.
  5. Прошкина Е.Н., Соловьев И.А., Шапошников М.В., Москалев А.А. Ключевые молекулярные механизмы старения, биомаркеры и потенциальные интервенции. Молекулярная биология. 2020;6(54):883–921. doi: 10.31857/S0026898420060099. eLIBRARY ID: 44038454.
  6. Lyu Y.X., Fu Q., Wilczok D., Ying K., King A., Antebi A. et al. Longevity biotechnology: bridging AI, biomarkers, geroscience and clinical applications for healthy longevity. Aging (Albany NY). 2024;16(20):12955–12976. doi: 10.18632/aging.206135.
  7. Kuro-o M., Matsumura Y., Aizawa H., Kawoguchi H., Suga T., Utsugi T. et al. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature. 1997; 390(6655): 45–51. doi: 10.1038/36285.
  8. Hanson K., Fisher K., Hooper N.M. Exploiting the neuroprotective effects of α-klotho to tackle ageing- and neurodegeneration-related cognitive dysfunction. Neuronal Signal. 2021;5(2):NS20200101. doi: 10.1042/NS20200101.
  9. Neyra J.A., Hu M.C. Potential application of klotho in human chronic kidney disease. Bone. 2017;100:41–49. doi: 10.1016/j.bone.2017.01.017.
  10. Нестерова А.А., Глинка Е.Ю., Тюренков И.Н., Перфилова В.Н. Белок Клото – универсальный регулятор физиологических процессов в организме. Успехи физиологических наук. 2020;2(51):88–104. doi: 10.31857/S0301179820020083.
  11. Тюренков И.Н., Перфилова В.Н., Нестерова А.А., Глинка Е.Ю. Белок Клото и сердечно-сосудистая система. Биохимия. 2021;2(86):158–174. doi: 10.31857/S0320972521020020. eLIBRARY ID: 44730844.
  12. Wu S.E., Chen W.L. Soluble klotho as an effective biomarker to characterize inflammatory states. Ann Med. 2022;54(1):1520–1529. doi: 10.1080/07853890.2022.2077428.
  13. Kurosu H., Yamamoto M., Clark J.D., Pastor J.V., Nandi A., Gurnani P. et al. Suppression of aging in mice by the hormone Klotho. Science. 2005;309(5742):1829–1833. doi: 10.1126/science.1112766.
  14. Prud’homme G.J., Kurt M., Wang Q. Pathobiology of the Klotho Antiaging Protein and Therapeutic Considerations. Frontiers in Aging. 2022;3:931331.
  15. Prud'homme G.J., Wang Q. Anti-Inflammatory Role of the Klotho Protein and Relevance to Aging. Cells. 2024;13(17):1413. doi: 10.3390/cells13171413.
  16. Бокша И.С., Прохорова Т.А., Савушкина О.К., Терешкина Е.Б. Белок Клото: роль при старении организма и патологии центральной нервной системы. Биохимия. 2017;82(9):1278–1295. eLIBRARY ID: 29957768. URL: https://www.elibrary.ru/download/elibrary_29957768_11335885.pdf.
  17. Прохорова Т.А., Бокша И.С., Савушкина О.К., Терешкина Е.Б., Бурбаева Г.Ш. Белок α-клото при нейродегенеративных и психических заболеваниях. Журнал неврологии и психиатрии им. C.C. Корсакова. 2019;1(119):80–88. doi: 10.17166/jnevro201911901180.
  18. Нестерова К.И., Глинка Е.Ю., Перфилова В.Н., Нестерова А.А., Капланов К.Д. Антивозрастной белок Клото как новый потенциальный супрессор опухолевого роста. Вестник Российской академии медицинских наук. 2023;1(78):24–44. doi: 10.15690/vramn2242.
  19. Мелехин В.В., Макеев О Г. Ген klotho: современные представления о структуре и функциях. Возможные механизмы противоопухолевого действия. Вестник Уральской медицинской академической науки. 2018;3(15):393–404. doi: 10.22138/2500-0918-2018-15-3-393-404.
  20. Kuro-o M. The Klotho proteins in health and disease. Nat Rev Nephrol. 2019;15(1):27–44. doi: 10.1038/s41581-018-0078-3.
  21. Pham A.Q., Dore K. Novel approaches to increase synaptic resilience as potential treatments for Alzheimer's disease. Semin Cell Dev Biol. 2023;139:84–92. doi: 10.1016/j.semcdb.2022.03.032.
  22. Hajare A.D., Dagar N., Gaikwad A.B. Klotho antiaging protein: molecular mechanisms and therapeutic potential in diseases. Mol Biomed. 2025;6(1):19. doi: 10.1186/s43556-025-00253-y.
  23. Chen X., Wei Y., Li Z., Zhou C., Fan Y. Distinct role of Klotho in long bone and craniofacial bone: skeletal development, repair and regeneration. Peer J. 2024;12:e18269. doi: 10.7717/peerj.18269.
  24. Donate-Correa J., Martín-Carro B., Cannata-Andía J.B., Mora-Fernández C., Navarro-González J.F. Klotho, Oxidative Stress and Mitochondrial Damage in Kidney Disease. Antioxidants (Basel). 2023;12(2):239. doi: 10.3390/antiox12020239.
  25. Xing L., Fang J., Zhu B., Wang L., Chen J., Wang Y. et al. Astragaloside IV protects against podocyte apoptosis by inhibiting oxidative stress via activating PPARγ-Klotho-FoxO1 axis in diabetic nephropathy. Life Sci. 2021;269:119068. doi: 10.1016/j.lfs.2021.119068.
  26. Ebert T., Neytchev O., Witasp A., Kublickiene K., Stenvinkel P., Shiels P.G. Inflammation and Oxidative Stress in Chronic Kidney Disease and Dialysis Patients. Antioxid Redox Signal. 2021;35(17):1426–1448. doi: 10.1089/ars.2020.8184.
  27. Zhou P., Zhao C., Chen Y., Liu X., Wu C., Hu Z. Klotho activation of Nrf2 inhibits the ferroptosis signaling pathway to ameliorate sepsis-associated acute kidney injury. Transl Androl Urol. 2023;12(12):1871–1884. doi: 10.21037/tau-23-573.
  28. Rusetskaya N.Y., Loginova N.Y., Pokrovskaya E.P., Chesovskikh Y.S., Titova L.E. Redox regulation of the NLRP3-mediated inflammation and pyroptosis. Biomed Khim. 2023;69(6):333–352. doi: 10.18097/PBMC20236906333.
  29. Zeng Y., Xu G., Feng C., Cai D., Wu S., Liu Y. et al. Klotho inhibits the activation of NLRP3 inflammasome to alleviate lipopolysaccharide-induced inflammatory injury in A549 cells and restore mitochondrial function through SIRT1/Nrf2 signaling pathway. Chin J Physiol. 2023;66(5):335–344. doi: 10.4103/cjop.CJOP-D-23-00029.
  30. Fu Y., Cao J., Wei X., Ge Y., Su Z., Yu D. Klotho alleviates contrast-induced acute kidney injury by suppressing oxidative stress, inflammation, and NF-KappaB/NLRP3-mediated pyroptosis. Int Immunopharmacol. 2023;118:110105. doi: 10.1016/j.intimp.2023.110105.
  31. He J., Cui J, Shi Y, Wang T, Xin J, Li Y. et al. Astragaloside IV Attenuates High-Glucose-Induced Impairment in Diabetic Nephropathy by Increasing Klotho Expression via the NF-κB/NLRP3 Axis. J Diabetes Res. 2023;22:7423661. doi: 10.1155/2023/7423661.
  32. Tang A., Zhang Y., Wu L., Lin Y., Lv L., Zhao L. et al. Klotho's impact on diabetic nephropathy and its emerging connection to diabetic retinopathy. Front Endocrinol (Lausanne). 2023;14:1180169. doi: 10.3389/fendo.2023.1180169.
  33. Zhou H., Pu S., Zhou H., Guo Y. Klotho as Potential Autophagy Regulator and Therapeutic Target. Front Pharmacol. 2021;12:755366. doi: 10.3389/fphar.2021.755366.
  34. Ren Y., Wang R., Weng S., Xu H., Zhang Y., Chen S. et al. Multifaceted role of redox pattern in the tumor immune microenvironment regarding autophagy and apoptosis. Mol Cancer. 2023;22(1):130. doi: 10.1186/s12943-023-01831-w.
  35. Gonzalez C.D., Carro Negueruela M.P., Nicora Santamarina C., Resnik R., Vaccaro M.I. Autophagy Dysregulation in Diabetic Kidney Disease: From Pathophysiology to Pharmacological Interventions. Cells. 2021;10(9):2497. doi: 10.3390/cells10092497.
  36. Xie Y., Huang K., Li H., Kong W., Ye J. High serum klotho levels are inversely associated with the risk of low muscle mass in middle-aged adults: results from a cross-sectional study. Front Nutr. 2024;11:1390517. doi: 10.3389/fnut.2024.1390517.
  37. Raffin J., de Souto Barreto P., Le Traon A.P., Vellas B., Aubertin-Leheudre M., Rolland Y. Sedentary behavior and the biological hallmarks of aging. Ageing Res Rev. 2023;83:101807. doi: 10.1016/j.arr.2022.101807.
  38. Paquette J.S., Rhéaume C., Cordeau P., Moulin J.A., Audet-Walsh E., Blanchette V. et al. The Longevity Protein Klotho: A Promising Tool to Monitor Lifestyle Improvements. Metabolites. 2023;13(11):1157. doi: 10.3390/metabo13111157.
  39. Chen S., Kong Y., Wang N., Kang N., Chen H., Zhang Z. et al. Association between weight change and serum anti-aging protein α-Klotho: a cross-sectional study in middle-aged and older adults. Sci Rep. 2024;14(1):18624. doi: 10.1038/s41598-024-69556-4.
  40. Chhetri J.K., Ma L., Kang L., Chan P. Optimizing intrinsic capacity to prevent frailty and sarcopenia in old age. J Frailty Sarcopenia Falls. 2023;8(3):136–138. doi: 10.22540/JFSF-08-136.
  41. Du R., Tang X., Jiang M., Qian S., Yang L., Tong X. et al. Association between cigarette smoking and serum alpha klotho levels among US adults over 40-years-old: a cross-sectional study. Sci Rep. 2023;13(1):19519. doi: 10.1038/s41598-023-46698-5.
  42. Ge S., Dong F., Tian C., Yang C.H., Liu M., Wei J. Serum soluble alpha-klotho klotho and cognitive functioning in older adults aged 60 and 79: an analysis of cross-sectional data of the National Health and Nutrition Examination Survey 2011 to 2014. BMC Geriatr. 2024;24(1):245. doi: 10.1186/s12877-024-04661-7.
  43. Liu S., Wu M., Wang Y., Xiang L., Luo G., Lin Q. et al. The Association between Dietary Fiber Intake and Serum Klotho Levels in Americans: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. Nutrients. 2023;15(14):3147. doi: 10.3390/nu15143147.
  44. Huang S., Hu H., Gong H. Association between the Planetary Health Diet Index and biological aging among the U.S. population. Front Public Health. 2024;12:1482959. doi: 10.3389/fpubh.2024.1482959.
  45. Ariadel-Cobo D.G., Estébanez B., González-Arnáiz E., García-Pérez M.P., Rivera-Viloria M., Pintor de la Maza B. et al. The effect of Klotho protein Levels in Obesity and Sarcopenia: A Systematic Review. Int J Mol Sci. 2025;26(5):1915. doi: 10.3390/ijms26051915.
  46. Liu, Y., Chen M. Emerging role of α-Klotho in energy metabolism and cardiometabolic diseases. Diabetes & Metabolic Syndrome: Clinical Research & Reviews. 2023;17(10):102854.
  47. Rostamzadeh F., Joukar S., Yeganeh-Hajahmadi M. The role of Klotho and sirtuins in sleep-related cardiovascular diseases: a review study. NPJ Aging. 2024;10(1):43. doi: 10.1038/s41514-024-00165-1.
  48. Luo H., Zheng Z., Hu H., Sun C. Serum klotho levels and mortality patterns in frail individuals: unraveling the u-shaped association. Aging Clin Exp Res. 2024;36(1):92. doi: 10.1007/s40520-024-02730-w.
  49. Yamamoto T., Isaka Y. Pathological mechanisms of kidney disease in ageing. Nature Reviews Nephrology. 2024;20(9):603–615.
  50. Liu X., Li Y., Chen X., Yin H., Li F., Cui J. et al. Revisiting the mechanisms linking blood glucose to cognitive impairment: new evidence for the potential important role of klotho. Front Endocrinol (Lausanne). 2024;15:1323407. doi: 10.3389/fendo.2024.1323407.
  51. Liu J., Wang H., Liu Q., Long S., Wu Y., Wang N. et al. Klotho exerts protection in chronic kidney disease associated with regulating inflammatory response and lipid metabolism. Cell Biosci. 2024;14(1):46. doi: 10.1186/s13578-024-01226-4. Erratum in: Cell Biosci. 2024;14(1):97. doi: 10.1186/s13578-024-01263-z.
  52. Kadier K., Liu P., Dilixiati D., Peng X., Ainiwaer A., Kadier D. et al. Maintaining ideal cardiovascular health is associated with higher serum anti-aging protein klotho in the middle-aged and older populations. J Nutr Health Aging. 2024;28(6):100224. doi: 10.1016/j.jnha.2024.100224.
  53. Linghui D., Simin Y., Zilong Z., Yuxiao L., Shi Q., Birong D. The relationship between serum klotho and cognitive performance in a nationally representative sample of US adults. Front Aging Neurosci. 2023;15:1053390. doi: 10.3389/fnagi.2023.1053390.
  54. Yang Z., Ma Y., Wang Y., Jin M., Bin J., Chen Z. et al. The prognostic value of serum α-klotho in age-related diseases among the US population: a prospective population-based cohort study. Preventive Medicine Reports. 2024; 42:102730.
  55. Kanbay M., Copur S., Ozbek L., Mutlu A., Cejka D., Ciceri P. et al. Klotho: a potential therapeutic target in aging and neurodegeneration beyond chronic kidney disease-a comprehensive review from the ERA CKD-MBD working group. Clin Kidney J. 2023;17(1):sfad276. doi: 10.1093/ckj/sfad276.
  56. Ma T.C., Zhou J., Wang C.X., Lin Z.Z., Gao F. Associations between the Healthy Eating Index-2015 and S-Klotho plasma levels: A cross-sectional analysis in middle-to-older aged adults. Front Nutr. 2023;9:904745. doi: 10.3389/fnut.2022.904745.
  57. Zhao J., Lai Y., Zeng L., Liang G., Jin X., Huang H. et al. Inverse association of the systemic immune-inflammation index with serum anti-ageing protein Klotho levels in individuals with osteoarthritis: A cross-sectional study. PLoS One. 2024;19(5):e0300674. doi: 10.1371/journal.pone.0300674.
  58. Chen P., Tang Y., Luo L., Chen H., He X. Lower serum Klotho level and higher systemic immune-inflammation index: an inverse correlation. BMC Geriatr. 2023;23(1):650. doi: 10.1186/s12877-023-04349-4.
  59. Chen Z., Liu M., Xu X., He L., Wang P., Cai X. et al. Serum Klotho Modifies the Associations of 25-Hydroxy Vitamin D With All-Cause and Cardiovascular Mortality. J Clin Endocrinol Metab. 2024;109(2):581–591. doi: 10.1210/clinem/dgad480.
  60. Martins A.R., Azeredo-Lopes S., Pereira S.A., Moreira I., Weigert A.L. Klotho and lean mass as novel cardiovascular risk factors in hemodialysis patients. Clin Kidney J. 2023;16(12):2587–2596. doi: 10.1093/ckj/sfad166.
  61. Oskuye Z.Z, Mehri K., Khalilpour J., Nemati S., Hosseini L., Bafadam S. et al. Klotho in age-related cardiovascular diseases: Insights into mitochondrial dysfunction and cell death. Int J Cardiol Heart Vasc. 2025;57:101629. doi: 10.1016/j.ijcha.2025.101629.
  62. Kanbay M., Brinza C., Ozbek L., Guldan M., Sisman U., Copur S. et al. The association between klotho and kidney and cardiovascular outcomes: a comprehensive systematic review and meta-analysis. Clin Kidney J. 2024;17(9):sfae255. doi: 10.1093/ckj/sfae255.
  63. Singh M., Agarwal V., Pancham P., Jindal D., Agarwal S., Rai S.N. et al. Comprehensive Review and Androgen Deprivation Therapy and Its Impact on Alzheimer's Disease Risk in Older Men with Prostate Cancer. Degener Neurol Neuromuscul Dis. 2024;14:33–46. doi: 10.2147/DNND.S445130.
  64. Pańczyszyn-Trzewik P., Czechowska E., Stachowicz K., Sowa-Kućma M. The Importance of α-Klotho in Depression and Cognitive Impairment and Its Connection to Glutamate Neurotransmission-An Up-to-Date Review. Int J Mol Sci. 2023;24(20):15268. doi: 10.3390/ijms242015268.
  65. Fung T.Y., Iyaswamy A., Sreenivasmurthy S.G., Krishnamoorthi S., Guan X.J., Zhu Z. et al. Klotho an Autophagy Stimulator as a Potential Therapeutic Target for Alzheimer's Disease: A Review. Biomedicines. 2022;10(3):705. doi: 10.3390/biomedicines10030705.
  66. Gao Y., Zhao C.J., Liu Q., Li C.C., Li Z., Li J. et al. Relationship between Serum Indoxyl Sulfate and Klotho Protein and Vascular Calcification in Patients with Chronic Kidney Disease Stages 3–5. Int J Endocrinol. 2024;2024:8229604. doi: 10.1155/2024/8229604.
  67. Ligumsky H., Merenbakh-Lamin K., Keren-Khadmy N., Wolf I., Rubinek T. The role of α-klotho in human cancer: molecular and clinical aspects. Oncogene. 2022;41(40):4487–4497. doi: 10.1038/s41388-022-02440-5.
  68. Нестерова К.И., Глинка Ю.Ю., Перфилова В.Н., Нестерова А.А., Капланов К.Д. Антивозрастной белок клото как новый потенциальный супрессор опухолевого роста. Вестник Российской академии медицинских наук. 2023;78(1):24–44. doi: 10.15690/vramn2242.
  69. Mota J., Lima A.M., Gomes J.I., Souza de Andrade M., Brito H.O., Silva M.M. et al. Klotho in Cancer: Potential Diagnostic and Prognostic Applications. Diagnostics (Basel). 2023;13(21):3357. doi: 10.3390/diagnostics13213357.
  70. Qiao Y., Liu F., Peng Y., Wang P., Ma B., Li L. et al. Association of serum Klotho levels with cancer and cancer mortality: Evidence from National Health and Nutrition Examination Survey. Cancer Med. 2023;12(2):1922–1934. doi: 10.1002/cam4.5027.
  71. Ortega M.A., Boaru D.L., De Leon-Oliva D., De Castro-Martinez P., Minaya-Bravo A.M. et al. The Impact of Klotho in Cancer: From Development and Progression to Therapeutic Potential. Genes (Basel). 2025;16(2):128. doi: 10.3390/genes16020128.
  72. Abboud M., Merenbakh-Lamin K., Volkov H., Ben-Neriah S., Ligumsky H., Bronfeld S. et al. Revealing the tumor suppressive sequence within KL1 domain of the hormone Klotho. Oncogene. 2024;43(5):354–362. doi: 10.1038/s41388-023-02904-2.
  73. Zhao Y., Zeng C.Y., Li X.H., Yang T.T., Kuang X., Du J.R. Klotho overexpression improves amyloid-β clearance and cognition in the APP/PS1 mouse model of Alzheimer's disease. Aging Cell. 2020;19(10):e13239. doi: 10.1111/acel.13239.
  74. Dubnov S., Bennett E.R., Yayon N. et al. Knockout of the longevity gene Klotho perturbs aging and Alzheimer's disease-linked brain microRNAs and tRNA fragments. Commun Biol. 2024;7(1):720. doi: 10.1038/s42003-024-06407-y.
  75. Guan Z., Ma L., Wu C. Association between Serum Klotho and Physical Frailty in Middle-Aged and Older Adults: Finding From the National Health and Nutrition Examination Survey. J Am Med Dir Assoc. 2023;24(8):1173–1178.e2. doi: 10.1016/j.jamda.2023.02.103.
  76. Luo H., Zheng Z., Hu H., Sun C. Serum klotho levels and mortality patterns in frail individuals: unraveling the u-shaped association. Aging Clin Exp Res. 2024;36(1):92. doi: 10.1007/s40520-024-02730-w.
  77. Akhiyat N., Ozcan I., Gulati R., Prasad A., Tchkonia T., Kirkland J.L. et al. Patients with Coronary Microvascular Dysfunction Have Less Circulating α-Klotho. Journal of the American Heart Association. 2024;13(9).
  78. Awasthi R., Manger P.T., Khare R.K., Alam R. Klotho protein: a new insight into the pathogenesis of essential hypertension. Clin Hypertens. 2024;30(1):36. doi: 10.1186/s40885-024-00294-5.
  79. Zhao X., Han D., Zhao C., Yang F., Wang Z., Gao Y. et al. New insights into the role of Klotho in inflammation and fibrosis: molecular and cellular mechanisms. Front Immunol. 2024;15:1454142. doi: 10.3389/fimmu.2024.1454142.
  80. Prud'homme G.J., Glinka Y., Kurt M., Liu W., Wang Q. The anti-aging protein Klotho is induced by GABA therapy and exerts protective and stimulatory effects on pancreatic beta cells. Biochem Biophys Res Commun. 2017;493(4):1542–1547. doi: 10.1016/j.bbrc.2017.10.029.
  81. Tyurenkov I.N., Bakulin D.A., Smirnov A.V., Ekova M.R., Bisinbekova A.I., Snigur G.L. et al. Neuroprotective properties of GABA and its derivatives in diabetic encephalopathy in old animals. Pharmacy & Pharmacology. 2023;11(3):211–227. doi: 10.19163/2307-9266-2023-11-3-211-227.
  82. Vázquez-Sánchez S., Blasco A., Fernández-Corredoira P., Cantolla P., Mercado-García E., Rodríguez-Sánchez E. et al. Recombinant Klotho administration after myocardial infarction reduces ischaemic injury and arrhythmias by blocking intracellular calcium mishandling and CaMKII activation. J Pathol. 2025;265(3):342–356. doi: 10.1002/path.6388.
  83. Roig-Soriano J., Edo Á., Verdés S., Martín-Alonso C., Sánchez-de-Diego C., Rodriguez-Estevez L. et al. Long-term effects of s-KL treatment in wild-type mice: Enhancing longevity, physical well-being, and neurological resilience. Mol Ther. 2025;33(4):1449–1465. doi: 10.1016/j.ymthe.2025.02.030.
  84. Shen J., Bin W., Lin X., Lai Y., Lin X., Guan T. et al. Klotho Protein: A Multifaceted Guardian of Healthy Aging and Its Therapeutic Potential. Int J Nanomedicine. 2025;20:7251–7270. doi: 10.2147/IJN.S514516.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Tyurenkov I.N.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).