Том 24, № 3 (2022)
- Год: 2022
- Статей: 8
- URL: https://journals.rcsi.science/1994-6309/issue/view/19947
- Описание:
Весь выпуск
ТЕХНОЛОГИЯ
Численный анализ процесса электронно-лучевой аддитивной наплавкис вертикальной подачей проволочного материала
Аннотация
Введение. В настоящее время во всем мире активно развиваются аддитивные технологии, которые находят все более широкое применение в промышленном производстве. Применение электронного пучка в аддитивных процессах направленного ввода энергии, так называемых Directed Energy Deposition (DED) технологиях, имеет ряд преимуществ, основными среди которых являются гибкость управления пространственно-энергетическими характеристиками теплового источника и наличие вакуумной защитной среды. Стандартной схемой осуществления аддитивной электронно-лучевой наплавки является оплавление электронным пучком проволочного присадочного материала, подаваемого сбоку в зону воздействия электронного пучка, однако такая схема аддитивной электронно-лучевой наплавки не обеспечивает равномерность теплового воздействия в наплавляемой области. Наиболее эффективным вариантом при электронно-лучевой наплавке является вертикальная подача проволоки, обеспечивающая наиболее стабильное формирование ванны жидкого металла и соответственно наплавленных валиков. При этом до настоящего времени отсутствуют результаты численного анализа этого процесса с целью определения основных его закономерностей. Цель работы: проведение численных экспериментов для качественного анализа и определения закономерностей формирования наплавляемых валиков и переноса присадочного материала, зависимости геометрических характеристик получаемых валиков от влияния сил давления паров, направления и величины азимутального угла действия источников тепла. Методами исследования являлась серия численных экспериментов, при которых анализировались варианты процесса электронно-лучевой наплавки при расположении вектора скорости наплавки в плоскости действия электронных пучков, и перпендикулярно этой плоскости для определения основных закономерностей формирования наплавляемых валиков и переноса присадочного материала, зависимости геометрических характеристик получаемых валиков от влияния сил давления паров, направления действия источников тепла и азимутального угла действия источников тепла. Результаты и обсуждение. Установлено, что геометрические характеристики наплавляемых валиков существенно зависят от взаимного расположения вектора скорости наплавки относительно плоскости действия электронных пучков, а учет силы давления паров оказывает значительное влияние на результаты численного моделирования формирования ванны расплава и протекающих в ней гидродинамических процессов. При этом при расположении вектора скорости наплавки перпендикулярно плоскости действия электронных пучков наблюдается более равномерная геометрия наплавляемых валиков металла, а увеличение азимутального угла действия источников тепла повышает вероятность выплесков на периферию наплавляемого валика, что связано с ограничением движения расплава в продольном направлении силами давления паров.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):6-21
6-21
Теоретический анализ способов пассивного шлифования рельсов
Аннотация
Введение. Существуют различные технологии механической обработки рельсов, предназначенные для устранения дефектов на поверхности катания и продления их жизненного цикла. Наиболее распространенной является технология шлифования рельсов вращающимися шлифовальными кругами с применением рельсошлифовальных поездов. Основной ее недостаток – низкая рабочая скорость перемещения шлифовального поезда, требующая организации технологических окон с остановкой движения поездов по перегону. Для выполнения профилактического шлифования рельсов с минимальным съемом металла с головки рельса, в последние годы получают распространение технологии пассивного шлифования с применением шлифовальных кругов. Пассивное шлифование – это когда на шлифовальном круге отсутствует мощность для активного его вращения. Такие методы позволяют достигать высоких скоростей движения шлифовального поезда, а работы можно осуществлять в графике движения поездов без закрытия перегона. В настоящее время технологии пассивного шлифования являются относительно новыми и не обладают необходимой научной базой для осуществления оптимизации процесса механической обработки. Цель работы. Теоретические исследования кинематического и силового анализов двух методов пассивного шлифования рельсов: периферией и торцом шлифовального круга. Методология проведения работы: кинематический и силовой расчет схем шлифования рельсов. Результаты и их обсуждение. В рамках теоретических исследований проведен кинематический и силовой анализ двух методов пассивного шлифования, на основании которого определены оптимальные условия их реализации. Установлено, что метод пассивного шлифования периферией круга имеет большую на 20 % производительность и энергоэффективность процесса перед торцевым пассивным шлифованием за счет большей скорости вращения шлифовального круга при равных усилиях его прижатия к рельсу. При этом пассивное шлифование торцом круга отличается большим в 2 раза диапазоном изменения как скорости вращения шлифовального круга, так и усилия его прижатия, что позволяет при равных скоростях движения шлифовальных поездов достичь большего съема металла. В заключении сформулированы перспективные задачи дальнейших исследований в области пассивного шлифования рельсов.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):22-39
22-39
Моделирование характеристик износа при скольжении композиционного материала на основе политетрафторэтилена (ПТФЭ), армированного углеродным волокном, в паре трения с SS304 (12Х18Н10Т)
Аннотация
Введение. В последнее десятилетие композиционные материалы на основе политетрафторэтилена (ПТФЭ) все чаще используются в качестве альтернативных материалов в автомобилестроении. ПТФЭ характеризуется низким коэффициентом трения, более высокой твердостью и коррозионной стойкостью. Однако этот материал имеет высокую скорость износа. Группа исследователей попыталась повысить износостойкость ПТФЭ, армировав его различными наполнителями. Цель работы. В данной работе экспериментально исследованы характеристики износа при сухом скольжении композиционного материала на основе ПТФЭ, армированного углеродным волокном (35 мас.%), в паре трения с нержавеющей сталью SS304. Кроме того, с помощью искусственных нейронных сетей (ИНС) разработаны экспериментальные математические модели и модели для прогнозирования удельной скорости изнашивания с учетом влияния давления, скорости скольжения и температуры поверхности. Методы исследования. Эксперименты по сухому скольжению проводились на машине для испытания на износ типа «стержень-диск» с изменением нормальной нагрузки на штифт, скорости вращения диска и температуры поверхности. Эксперименты по исследованию влияния входных параметров на удельную скорость изнашивания в широком диапазоне проектных пространств планировались системно. Всего было проведено пятнадцать экспериментов на 5-километровой дистанции без повторения эксперимента с центральным бегом. Скорости скольжения получали подбором диаметра дорожки на диске и соответствующей скорости вращения диска. Для ИНС-модели был использован алгоритм машинного обучения с обратным распространением с прямой связью. Результаты и обсуждение. Это исследование показало лучшую точность прогнозирования благодаря архитектуре ИНС, имеющей два скрытых слоя со 150 нейронами на каждом. Исследование выявило увеличение удельной скорости изнашивания при нормальной нагрузке, скорости скольжения и температуре поверхности. Однако это увеличение более заметно при более высоких параметрах процесса. Нормальная нагрузка и скорость скольжения наиболее существенно влияет на удельную скорость изнашивания. Значения удельной скорости изнашивания, полученные в результате расчета по разработанным моделям, хорошо согласуются с экспериментальными значениями со средней погрешностью, близкой к 10 %. Это показывает, что модель может быть использована для получения скорости износа композита на основе ПТФЭ, армированного углеродным волокном (35 мас.%), в паре трения с нержавеющей сталью SS304. Проведенное исследование имеет задел для дальнейших исследований, рассматривающих влияние различных архитектур ИНС, различного количества нейронов и скрытых слоев на точность прогнозирования скорости износа.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):40-52
40-52
ОБОРУДОВАНИЕ. ИНСТРУМЕНТЫ
Особенности применения ультразвука при плазменно-механической обработке деталей из труднообрабатываемых материалов
Аннотация
Введение. Конструкционные материалы, в том числе материалы из жаропрочных и труднообрабатываемых сталей, широко применяются в различных отраслях машиностроения. Для повышения эффективности изготовления деталей термического оборудования из жаропрочных и труднообрабатываемых сталей применяется технологический метод резания с предварительным плазменным подогревом заготовки. Существует также технологический метод резания металлов, в том числе труднообрабатываемых ультразвуковым точением. Исходя из этого для повышения эффективности плазменной механической обработки труднообрабатываемых материалов необходимо исследовать технологические возможности применения ультразвукового точения при плазменной механической обработке. Цель работы: исследовать износ режущих инструментов при применении ультразвука в условиях плазменно-механической обработки деталей из труднообрабатываемых материалов. В работе исследованы: особенности процесса плазменно-механической обработки в условиях ультразвукового резания и определены величины износа твердосплавных резцов ВК8, Т5К10 и Т15К6 при обработке сталей марок 20Х13Н18 и 20Х25Н20С2Л, а также определены износ указанных резцов в условиях обычного точения этих же материалов для сопоставления результатов износа резцов в различных условиях обработки. Методом исследования является определение линейного износа твердосплавных резцов по задней поверхности при обычной, плазменно-механической и плазменно-механической обработке с применением ультразвукового резания. Линейный износ резцов был измерен инструментальным микроскопом и визуально обследован лупой с десятикратным увеличением. Результаты и обсуждение. В статье приводятся результаты экспериментальных исследований по определению износа режущих инструментов при обработке жаропрочных сталей марки 20Х13Н18 и 20Х25Н20С2Л твердосплавными резцами марки ВК8, Т5К10 и Т15К6. Проводились исследования по определению износа твердосплавных резцов как при обычном механическом резании, плазменно-механическим резании, а также плазменно-механическим резании с применением ультразвука. Эксперименты проводились при точении указанных материалов на модернизированном токарном станке мод.1А64. К токарному станку подключен выпрямитель с управляемым дросселем и плазмотрон мод. АПР-403, на суппорте станка размещен плазмодержатель. В качестве источника питания сжатой электрической дуги служит полупроводниковый выпрямитель. Электронная дуга горит между катодом (плазмотроном) и анодом (заготовкой) в точке плазмообразующего газа, сжатый воздух проходит через канал сопла плазмотрона. При проведении экспериментов положение плазмотрона регулировалось по отношению оси вращения детали. При проведении опытов по изучению износа резцов в условиях ультразвукового плазменно-механического резания ультразвук подавался на режущую кромку с помощью устройства, разработанного авторами. При обработке жаропрочных сталей в обычных условиях точения режимы обработки были следующими: скорость резания V = 10 м/мин, глубина резания t = 3…4 мм, продольная подача Sпр = 0,31 мм/об. Установлено, что при обработке сталей марки 20Х13Н18 при таких условиях задняя поверхность твердосплавного резца Т5К10 изнашивается до величины 1 мм в течение 10 мин, а твердосплавного резца ВК8 – в течение 15 мин. При плазменной механической обработке в 2 раза увеличены скорость резания и величина подачи, при этом Т5К10 изнашивается до 1мм в течение 20 минут, ВК8 – 25 мин. Плазменно-механическая обработка с применением ультразвука показала, что твердосплавный резец Т5К10 за 50 мин резания изнашивается на величину 0,50 мм, а ВК8 – 0,35 мм. Такие же результаты получены при обработке жаропрочной стали 20Х25Н20С2Л. Таким образом, исследование износа твердосплавных резцов при обработке жаропрочных сталей показали, что использование ультразвукового резания при плазменно-механической обработке сталей может значительно снизить величину износа инструмента. Представленные результаты подтверждают перспективность применения ультразвукового плазменно-механического резания жаропрочных сталей лезвийными инструментами.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):53-65
53-65
МАТЕРИАЛОВЕДЕНИЕ
Деформационная способность сплава с памятью формы TiNiHf при прокатке с импульсным током
Аннотация
Введение. Деформационная способность материалов является одной из основных механических характеристик, определяющих возможность их производства с применением различных технологических процессов обработки металлов давлением. Среди интерметаллических соединений особая роль принадлежит сплавам с высокотемпературным эффектом памяти формы (ЭПФ) на основе TiNi легированных гафния. Большинство таких сплавов являются не только трудно деформируемыми, но и достаточно хрупкими. Поэтому разработка любых технологических схем для повышения деформационной способности данных сплавов является актуальной. Цель работы: исследование деформационной способности и возможности применения электрического импульсного тока при холодной прокатке сплава TiNiHf. Данный способ обработки ранее не применялся к этим сплавам. В работе исследована деформационная способность при холодной прокатке полосы толщиной 2 мм из труднодеформируемого высокотемпературного сплава с памятью формы на основе TiNi с добавкой гафния. Для повышения деформируемости использовали внешнее воздействие в виде импульсного тока высокой плотности более 200 А/мм2. Методами исследования являлись: рентгенографический анализ с целью оценки исходного фазового состояния, анализ эволюция истинной и инженерной деформации до разрушения (появления видимых макротрещин в зоне деформирования), оптическая микроскопия с увеличением от 50 до 100 и измерение твердости по Виккерсу при комнатной температуре. Результаты и обсуждение. Установлено повышение деформируемости при воздействии импульсного тока по сравнению с прокаткой без тока и достижение максимальной деформации 1,7 (истинная) и 85 % (инженерная). Исходная крупнозернистая равноосная мартенситная микроструктура (50 мкм) трансформируется в вытянутую вдоль направления прокатки микроструктуру, при этом твердость повышается на 50 %. Отсутствие заметных структурных изменений и наблюдающееся упрочнение могут свидетельствовать о нетепловом эффекте тока в повышении деформируемости. Таким образом, результаты проведенных исследований свидетельствуют о перспективности применения метода прокатки с током труднодеформируемого сплава TiNiHf с памятью формы в качестве способа обработки металлов давлением.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):66-75
66-75
Микроструктура и остаточные напряжения многослойных покрытий ZrN/CrN, полученных плазменно-ассистированным вакуумно-дуговым методом
Аннотация
Введение. Сегодняшнее состояние в области применения твердых покрытий нуждается в формировании наноструктурированных композиций с использованием различных химических элементов. Современные твердые покрытия способны сочетать в себе разные свойства, такие как высокая твердость, износостойкость, коррозионная стойкость. В настоящее время перспективными являются покрытия, полученные послойным нанесением нитридов циркония и хрома. При осаждении комбинаций химических элементов на различные подложки требуются исследования, направленные на изучение их микроструктуры и главным образом остаточных напряжений, сформированных при нанесении многослойных покрытий. Целью работы является исследование структурно-фазового состояния и остаточных напряжений покрытий системы ZrN/CrN, полученных плазменно-ассистированным вакуумно-дуговым методом из газовой фазы. Методика исследования. В работе исследованы образцы с покрытиями из нитридов циркония и хрома, нанесенными на подложки из твердого сплава ВК8. В работе используются такие методы исследований, как просвечивающая электронная микроскопия для изучения микроструктурных характеристик многослойных покрытий и рентгеноструктурный анализ для количественного определения остаточных напряжений I рода. Результаты и их обсуждение. На основании полученных экспериментальных результатов установлено, что изменение режимов нанесения многослойных покрытий ZrN/CrN в части скоростей вращения стола и подложкодержателя приводит к изменению микроструктуры, морфологии и внутренних напряжений поверхностных слоев многослойных покрытий. Показано, что при изменении условий нанесения слоев многослойного покрытия открываются возможности формирования покрытий ZrN/CrN на подложке из сплава ВК8 с наномасштабной толщиной слоев покрытия. Рентгеноструктурный анализ указывает в основном на несущественные напряжения, а при высокой скорости вращения стола и подложкодержателя на высокие сжимающие напряжения во многослойном покрытии. В ходе исследований просвечивающей электронной микроскопии установлено, что покрытия CrN и ZrN имеют общую текстуру роста многослойного покрытия при низких скоростях вращения, а при высоких скоростях наблюдается текстурная разориентировка фаз слоев покрытия. На основе полученных результатов можно рекомендовать покрытия системы ZrN/CrN в качестве твердых покрытий.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):76-89
76-89
Сравнение подходов, основанных на методе Вильямсона–Холла, для анализа структуры высокоэнтропийного сплава Al0,3CoCrFeNi после холодной пластической деформации
Аннотация
Введение. Высокоэнтропийные сплавы (ВЭС) являются новым и перспективным классом материалов, которые привлекают внимание как ученых, так и инженеров всего мира. Среди всех сплавов системы AlxCoCrFeNi отдельное внимание привлекают ВЭС с x ≤ 0,3. Для материалов с данным составом характерно наличие только одной фазы с гранецентрированной кубической решеткой (ГЦК). Такие сплавы обладают высокой пластичностью (для них является возможным достижение высоких степеней деформации без видимых следов разрушения), отличной коррозионной стойкостью и фазовой стабильностью при высоких температурах. Целью данной работы являлось сравнение нескольких методов профильного анализа на примере пластически деформированных слитков высокоэнтропийного сплава Al0,3CoCrFeNi. Методы исследования. С использованием нескольких методов профильного анализа рентгенограмм исследовались структуры холоднодеформированного высокоэнтропийного сплава (ВЭС) Al0,3CoCrFeNi. Помимо классического метода Вильямсона–Холла анализ проводился с использованием модифицированного метода Вильямсона–Холла, а также методом, учитывающим анизотропию упругих свойств кристаллической решетки. Материал исследования. В качестве объекта исследования в работе использовались слитки высокоэнтропийного сплава Al0,3CoCrFeNi, деформированные методом холодной прокатки с максимальной степенью обжатия 80 %. Из полученных заготовок вырезались образцы, которые исследовались методом дифракции синхротронного излучения по схеме «на просвет» вдоль двух (продольного (RD) и поперечного (TD)) направлений проката. Результаты и обсуждение. Показано, что реализация классического метода Вильямсона–Холла приводит к появлению существенной ошибки при аппроксимации экспериментальных результатов. Модифицированный метод Вильямсона–Холла отличается наименьшей ошибкой аппроксимации и может быть рекомендован для исследования сплава Al0,3CoCrFeNi. Анализ деформированных образцов с применением этого метода позволил выявить несколько особенностей формирования дефектов кристаллического строения, которые хорошо согласуются с классическими представлениями о механизмах пластической деформации. Во-первых, рост степени деформации высокоэнтропийного сплава Al0,3CoCrFeNi приводит к практически равномерному повышению количества двойников и дефектов упаковки. Во-вторых, с ростом степени обжатия происходит снижение доли краевых и повышение доли винтовых дислокаций в материале. Полученные результаты хорошо коррелируют с результатами измерения микротвердости.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):90-102
90-102
Структурные особенности и технология получения легких броневых композиционных материалов с механизмом локализации хрупких трещин
Аннотация
Введение. Традиционно используемые в изделиях вооружений военной и специальной техники монометаллические брони имеют ряд ключевых недостатков, оказывающих существенное влияние на тактико-технические характеристики изделий, а именно существенный вес и толщину. При этом широко используемые в последнее время в качестве альтернативного варианта композиционные неметаллические брони, в свою очередь, не способны выдерживать множественные попадания в локальные области конструкции вследствие полного своего разрушения или расслоения. Цель работы: разработка технологии получения нового класса многослойных металлических бронематериалов на основе легких металлов и сплавов сваркой взрывом, сочетающих в себе высокие показатели пулестойкости и конструкционной прочности наряду с низким удельным весом. В работе представлена новая схема армирования композита с применением технологии сварки взрывом, позволяющая локализовать развитие хрупких трещин по межслойным границам при внешнем баллистическом воздействии на объект. Результаты и обсуждение. Сваркой взрывом получен армированный композиционный материал на основе сплавов титана и алюминия. Определены рациональные режимы ударно-волнового нагружения, обеспечивающие получение композиционного материала требуемого качества, проведена оценка прочности композита. С целью улучшения тактико-технических характеристик композита было предложено формирование в его структуре высокотвердых интерметаллических слоев за счет термической обработки. Определены рациональные режимы высокотемпературного отжига, обеспечивающие формирование интерметаллических слоев заданной толщины в структуре композита. Изучен фазовый состав прослоек интерметаллида. Исследованы структурные особенности композиционного материала. Описан механизм локализации хрупких трещин в структуре композита при баллистическом воздействии на него.
Обработка металлов (технология • оборудование • инструменты). 2022;24(3):103-111
103-111

