Theoretical analysis of passive rail grinding

Cover Page

Cite item

Abstract

Introduction. There are different rail machining technologies designed to eliminate defects on the tread surface and extend the life cycle of rails. The most used is the technology of grinding rails with rotating grinding wheels using rail-grinding trains. Its main disadvantage is the low working speed of the grinding train that requires the organization of track possessions with stopping the movement of trains along the haul. To perform preventive rail grinding with minimal metal removal from the rail head, passive grinding technologies using grinding wheels have become widespread in last years. Passive grinding is when there is no power on the grinding wheel to rotate it actively. Such methods make it possible to achieve high speeds of the grinding train, and the work can be carried out in the train schedule without closing the stage. Currently, passive grinding technologies are relatively new and do not have the necessary scientific basis for optimizing the machining process. The aim of the work is to perform theoretical studies of kinematic and force analyzes of two methods of rail passive grinding: the periphery and the end face of the grinding wheel. Methodology of the work is kinematic and power calculations of rail grinding schemes. Results and discussion. Within the framework of theoretical studies, a kinematic and force analysis of two methods of passive grinding are carried out, on the basis of which the optimal conditions for its implementation are determined. It is established that the method of passive grinding by the periphery of the wheel has a 20 % higher productivity and energy efficiency of the process before end passive grinding due to the higher rotation speed of the grinding wheel with equal forces of pressing it to the rail. At the same time, passive grinding with the end of the wheel is distinguished by a twice greater range of change in both the speed of the grinding wheel rotation and the force of its pressing that makes it possible to achieve greater metal removal at equal speeds of the grinding trains. In conclusion, promising tasks for further research in the field of passive rail grinding are formulated.

About the authors

A. S. Ilinykh

Email: asi@stu.ru
D.Sc. (Engineering), Associate Professor, Siberian Transport University, 191 Dusy Kovalchuk st., Novosibirsk, 630049, Russian Federation, asi@stu.ru

V. V. Banul

Email: banul@ngs.ru
Ph.D. (Engineering), Siberian Transport University, 191 Dusy Kovalchuk st., Novosibirsk, 630049, Russian Federation, banul@ngs.ru

D. S. Vorontsov

Email: voroncovds@stu.ru
Ph.D. (Engineering), Associate Professor, Siberian Transport University, 191 Dusy Kovalchuk st., Novosibirsk, 630049, Russian Federation, voroncovds@stu.ru

References

  1. Rail surface quality analysis according to rail grinding on operational railway track / W. Jeong, J. Hong, H. Kho, H. Lee // Journal of the Korean Society for Railway. – 2021. – Vol. 24, iss. 10. – P. 852–860. – doi: 10.7782/JKSR.2021.24.10.852.
  2. Lundmark J. Rail grinding and its impact on the wear of wheels and rails // Licentiate Thesis. – 2007. – URL: https://www.diva-portal.org/smash/get/diva2:990239/FULLTEXT01.pdf (accessed: 03.08.2022).
  3. Jeong W., Shin J. Grinding effect analysis according to control variables of compact rail surface grinding machine // Journal of the Korean Society for Railway. – 2020. – Vol. 23, iss. 7. – P. 688–695. – doi: 10.7782/JKSR.2020.23.7.688.
  4. Обобщение передового опыта тяжеловесного движения: вопросы взаимодействия колеса и рельса / У.Дж. Харрис, С.М. Захаров, Дж. Ландгрен, Х. Турне, В. Эберсен. – М.: Интекст, 2002. – 408 с. – ISBN 978-5-89277-037-0.
  5. Ильиных А.С., Бондарев Э.С. Отечественный и зарубежный опыт организации и планирования работ по шлифованию рельсов // Фундаментальные и прикладные вопросы транспорта. – 2021. – № 1 (2). – С. 11–24. – doi: 10.52170/2712-9195/2021_2_11.
  6. Fan W., Liu Y., Li J. Development status and prospect of rail grinding technology for high speed railway // Journal of Mechanical Engineering. – 2018. – Vol. 54, iss. 22. – P. 184–193. – doi: 10.3901/JME.2018.22.184.
  7. Design method of rail grinding target profile based on non–uniform rational B-spline / F. Lin, S. Wang, H. Zhang, W. Hu // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2021. – Vol. 235, iss. 8. – P. 946–956. – doi: 10.1177/0954409720972819.
  8. Influence of rail grinding process parameters on rail surface roughness and surface layer hardness / E. Uhlmann, P. Lypovka, L. Hochschild, N. Schröer // Wear. – 2016. – Vol. 366–367 – P. 287–293. – doi: 10.1016/j.wear.2016.03.023.
  9. Ilinykh A., Matafonov A., Yurkova E. Efficiency of the production process of grinding rails on the basis of optimizing the periodicity of works // Advances in Intelligent Systems and Computing. – 2019. – Vol. 2. – P. 672–681. – doi: 10.1007/978-3-030-37919-3_67.
  10. Суслов А.Г., Бишутин С.Г., Захаров Л.А. Инновационные технологии рельсообработки высокоскоростных железных дорог // Наукоемкие технологии в машиностроении. – 2020. – № 8. – С. 11–17. – doi: 10.30987/2223-4608-2020-8-11-17.
  11. Schoch W. Grinding of rails on high-speed railway lines: a matter of great importance // Rail Engineering International. – 2007. – Vol. 36, iss. 1. – P. 6–8.
  12. Funke H. Rail grinding. – Berlin: Transpress, 1986. – 153 p.
  13. Taubert M., Püschel A. Speed grinding rail // International Railway Journal. – 2009. – N 7. – P. 31–33.
  14. Скоростное шлифование рельсов // Железные дороги мира. – 2010. – № 7. – C. 68–71.
  15. Высокоскоростное шлифование рельсов // Железные дороги мира. – 2011. – № 8. – C. 62–66.
  16. Патент № 2759298 Российская Федерация. Способ обработки поверхности головки рельса и устройство для его осуществления: № 2021103701: заявл. 12.02.2021: опубл. 11.11.2021 / А.С. Ильиных, В.В. Банул.
  17. Особенности формирования технологического процесса плоского шлифования торцом круга при упругой подвеске шлифовальной головки / В.А. Аксенов, А.С. Ильиных, М.С. Галай, А.В. Матафонов // Вестник Пермского национального исследовательского политехнического университета. Машиностроение, материаловедение. – 2016. – Т. 18, № 4. – C. 34–47. – doi: 10.15593/2224-9877/2016.4.03.
  18. Doman D., Warkentin A., Bauer R. A survey of recent grinding wheel topography models // International Journal of Machine Tools and Manufacture. – 2006. – Vol. 46, iss. 3. – P. 343–352. – doi: 10.1016/j.ijmachtools.2005.05.013.
  19. Experimental observation of tool wear in rotary ultrasonic machining of advanced ceramics / W. Zenga, Z. Lib, Z. Peib, C. Treadwell // International Journal of Machine Tools and Manufacture. – 2005. – Vol. 45, iss. 12–13. – P. 1468–1473.
  20. Designed a passive grinding test machine to simulate passive grinding process / P. Liu, W. Zou, J. Peng, X. Song, F. Xiao // Processes. – 2021. – Vol. 9, iss. 8. – P. 1317. – doi: 10.3390/pr9081317.
  21. Study on the effect of grinding pressure on material removal behavior performed on a self-designed passive grinding simulator / P. Liu, W. Zou, J. Peng, X. Song, F. Xiao // Applied Sciences. – 2021. – Vol. 11, iss. 9. – P. 4128. – doi: 10.3390/app11094128.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).