Anisotropy of properties in metal materials fabricated by wire arc additive manufacturing (WAAM)
- Authors: Kirichek A.V.1, Soloviev D.L.2, Yashin A.V.2, Silantyev S.A.2, Aborkin A.V.2, Novikov M.A.1
-
Affiliations:
- Bryansk State Technical University
- Vladimir State University named after Alexander and Nikolay Stoletovs
- Issue: Vol 27, No 4 (2025)
- Pages: 206-220
- Section: MATERIAL SCIENCE
- URL: https://journals.rcsi.science/1994-6309/article/view/356671
- DOI: https://doi.org/10.17212/1994-6309-2025-27.4-206-220
- ID: 356671
Cite item
Abstract
Introduction. Additive manufacturing (AM) technologies, particularly wire arc additive manufacturing (WAAM), offer a rapid and cost-effective approach for producing complex metal components. However, WAAM can induce anisotropy in the resulting material's physical and mechanical properties. This anisotropy must be considered in design and application to ensure reliable performance in service. The purpose of the work. This study aims to quantitatively assess the anisotropy of mechanical properties in materials produced by WAAM to enhance the reliability of components used in critical applications. Research methodology. Samples were fabricated from low-carbon alloyed steel (0.08 C-2 Mn-1 Si), stainless steel (0.04 C-19 Cr-9 Ni), and aluminum alloy (97 Al-3 Mg) using the WAAM process. These samples were then subjected to mechanical testing to determine their tensile and impact toughness and hardness. Results were compared to those of the materials in the initial state to determine the relative anisotropy of each property. Results and discussion. For 0.08 C-2 Mn-1 Si steel, the tensile strength of WAAM-fabricated samples exhibited minimal variation across different orientations, indicating relatively high isotropy (relative anisotropy of 1.3 %). A relative anisotropy of 33 % was observed for elongation, 21 % for impact toughness, and 16 % for hardness. The 0.04 C-19 Cr-9 Ni stainless steel exhibited a relative anisotropy of 15.1 % for tensile strength, 244 % for elongation, 33 % for impact toughness, and 4% for hardness. The 97 Al-3 Mg aluminum alloy showed a significant relative anisotropy in tensile strength (83.6 %) and relative elongation (513 %) due to differences in the “vertical” direction. Impact toughness exhibited only slight variations (28 %) depending on sample orientation, while hardness can be considered isotropic. In general, hardness demonstrated the lowest relative anisotropy, while elongation exhibited the highest.
About the authors
Andrey V. Kirichek
Bryansk State Technical University
Email: avkbgtu@gmail.com
ORCID iD: 0000-0002-3823-0501
SPIN-code: 6910-0233
Scopus Author ID: 6506677389
ResearcherId: AAQ-9985-2020
D.Sc. (Engineering), Professor
Russian Federation, 241035, Russian Federation, Bryansk, 7 50 Let Oktyabrya Bul.Dmitry L. Soloviev
Vladimir State University named after Alexander and Nikolay Stoletovs
Author for correspondence.
Email: murstin@yandex.ru
ORCID iD: 0000-0002-4475-319X
Scopus Author ID: 6603827038
ResearcherId: O-8393-2015
D.Sc. (Engineering), Professor
Russian Federation, 600000, Russian Federation, Vladimir, 87 Gorkogo str.Alexander V. Yashin
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: yashin2102@yandex.ru
ORCID iD: 0000-0002-3186-1300
SPIN-code: 3473-4047
Scopus Author ID: 36816597400
ResearcherId: F-8330-2017
Ph.D. (Engineering), Associate Professor
Russian Federation, 600000, Russian Federation, Vladimir, 87 Gorkogo str.Sergey A. Silantyev
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: ppdsio@yandex.ru
ORCID iD: 0000-0002-3524-385X
SPIN-code: 2686-4678
Scopus Author ID: 59747487400
Ph.D. (Engineering), Associate Professor
Russian Federation, 600000, Russian Federation, Vladimir, 87 Gorkogo str.Artemy V. Aborkin
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: aborkin@vlsu.ru
ORCID iD: 0000-0003-4979-7164
SPIN-code: 9617-7413
Scopus Author ID: 57189059617
ResearcherId: K-8968-2013
Ph.D. (Engineering), Associate Professor
Russian Federation, 600000, Russian Federation, Vladimir, 87 Gorkogo str.Maxim A. Novikov
Bryansk State Technical University
Email: NovikovMax14@yandex.ru
ORCID iD: 0009-0000-7552-312X
SPIN-code: 1355-7688
ResearcherId: P-6142-2017
Scientific associate
Russian Federation, 241035, Russian Federation, Bryansk, 7 50 Let Oktyabrya Bul.References
- Tomar B., Shiva S., Nath T. A review on wire arc additive manufacturing: Processing parameters, defects, quality improvement and recent advances // Materials Today Communications. – 2022. – Vol. 31. – P. 103739. – doi: 10.1016/j.mtcomm.2022.103739.
- Invited review article: Strategies and processes for high quality wire arc additive manufacturing / C.R. Cunningham, J.M. Flynn, A. Shokrani, V. Dhokia, S.T. Newman // Additive Manufacturing. – 2018. – Vol. 22. – P. 672–686. – doi: 10.1016/j.addma.2018.06.020.
- Description of anisotropic material response of wire and arc additively manufactured thin-walled stainless steel elements / N. Hadjipantelis, B. Weber, C. Buchanan, L. Gardner // Thin-Walled Structures. – 2022. – Vol. 171. – P. 108634. – doi: 10.1016/j.tws.2021.108634.
- On the anisotropy of thick-walled wire arc additively manufactured stainless steel parts / L. Palmeira Belotti, T.F.W. van Nuland, M.G.D. Geers, J.P.M. Hoefnagels, J.A.W. van Dommelen // Materials Science and Engineering: A. – 2023. – Vol. 863. – P. 144538. – doi: 10.1016/j.msea.2022.144538.
- Wire + Arc additive manufacturing / S.W. Williams, F. Martina, A.C. Addison, J. Ding, G. Pardal, P. Colegrove // Materials Science and Technology. – 2016. – Vol. 32 (7). – P. 641–647. – doi: 10.1179/1743284715Y.0000000073.
- Heat sources in wire arc additive manufacturing and their impact on macro-microstructural characteristics and mechanical properties – An overview / N.A. Siddiqui, M. Muzamil, T. Jamil, G. Hussain // Smart Materials in Manufacturing. – 2025. – Vol. 3. – P. 100059. – doi: 10.1016/j.smmf.2024.100059.
- Albannai A.I. A brief review on the common defects in wire arc additive manufacturing // International Journal of Current Science Research and Review. – 2022. – Vol. 5 (12). – P. 4556–4576. – doi: 10.47191/ijcsrr/V5-i12-19.
- Residual stress in wire and arc additively manufactured aluminum components / J. Sun, J. Hensel, M. Köhler, K. Dilger // Journal of Manufacturing Processes. – 2021. – Vol. 65. – P. 97–111. – doi: 10.1016/j.jmapro.2021.02.021.
- Le V.Th., Mai D.S. Microstructural and mechanical characteristics of 308L stainless steel manufactured by gas metal arc welding-based additive manufacturing // Materials Letters. – 2020. – Vol. 271. – P. 127791. – doi: 10.1016/j.matlet.2020.127791.
- Open-source wire and arc additive manufacturing system: Formability, microstructures, and mechanical properties / X. Lu, Y.F. Zhou, X.L. Xing, L.Y. Shao, Q.X. Yang, S.Y. Gao // The International Journal of Advanced Manufacturing Technology. – 2017. – Vol. 93 (5–8). – P. 2145–2154. – doi: 10.1007/s00170-017-0636-z.
- Yangfan W., Xizhang Ch., Chuanchu S. Microstructure and mechanical properties of Inconel 625 fabricated by wire-arc additive manufacturing // Surface and Coatings Technology. – 2019. – Vol. 374. – P. 116–123. – doi: 10.1016/j.surfcoat.2019.05.079.
- Исследование структуры и анизотропии механических свойств стального изделия, полученного методом послойной электродуговой проволочной 3D-печати / И.В. Власов, А.И. Гордиенко, А.Е. Кузнецова, В.М. Семенчук // Известия высших учебных заведений. Черная Металлургия. – 2023. – Т. 66, № 6. – С. 709–717. – doi: 10.17073/0368-0797-2023-6-709-717.
- Nagasai B., Malarvizhi S., Balasubramanian V. Mechanical properties of wire arc additive manufactured carbon steel cylindrical component made by gas metal arc welding process // Journal of the Mechanical Behavior of Materials. – 2021. – Vol. 30 (1). – P. 188–198. – doi: 10.1515/jmbm-2021-0019.
- Microstructure and mechanical properties of wire and arc additive manufactured AZ31 magnesium alloy using cold metal transfer process / X. Yang, J. Liu, Zh. Wang, X. Lin, F. Liu, W. Huang, E. Liang // Materials Science and Engineering: A. – 2020. – Vol. 774. – P. 138942. – doi: 10.1016/j.msea.2020.138942.
- Review on effect of heat input for wire arc additive manufacturing process / N.A. Rosli, M.R. Alkahari, M.F. bin Abdollah, Sh. Maidin, F.R. Ramli, S.G. Herawan // Journal of Materials Research and Technology. – 2021. – Vol. 11. – P. 2127–2145. – doi: 10.1016/j.jmrt.2021.02.002.
- Selvi S., Vishvaksenan A., Rajasekar E. Cold metal transfer (CMT) technology – An overview // Defence Technology. – 2018. – Vol. 14 (1). – P. 28–44. – doi: 10.1016/j.dt.2017.08.002.
- Nguyen Q.L. Tool path planning for wire-arc additive manufacturing processes. Thesis for: Doctoral. – BTU Cottbus – Senftenberg, 2022. – doi: 10.26127/BTUOpen-5982.
- Effect of deposition strategies on mechanical strength of wire arc additively manufactured Inconel 625 / G.S. Rajput, M. Gor, H. Soni, V. Badheka, P. Sahlot // Materials Today: Proceedings. – 2022. – Vol. 62 (13). – P. 7324–7328. – doi: 10.1016/j.matpr.2022.05.164.
- D-printed metals: Process parameters effects on mechanical properties of 17-4 P H stainless steel / F.R. Andreacola, I. Capasso, A. Langella, G. Brando // Heliyon. – 2023. – Vol. 9 (7). – P. e17698. – doi: 10.1016/j.heliyon.2023.e17698.
- Гибридные технологии и оборудование аддитивного синтеза изделий / А.В. Киричек, О.Н. Федонин, А.В. Хандожко, А.А. Жирков, Д.Л. Соловьев, С.В. Баринов // Наукоемкие технологии в машиностроении. – 2022. – № 8 (134). – С. 31–38. – doi: 10.30987/2223-4608-2022-8-31-38.
- Влияние технологических факторов на процессы формирования параметров качества изделий, изготавливаемых WAAM-методом на основе дуговой сварки в защитных газах / Ш. Ли, Ч. Линь, А.В. Киричек, М.Н. Нагоркин, М.А. Новиков // Наукоемкие технологии в машиностроении. – 2025. – № 5 (167). – С. 3–14. – doi: 10.30987/2223-4608-2025-5-3-14.
Supplementary files
Note
Funding
The research was carried out with the support of the Ministry of Science and Higher Education of the Russian Federation, as part of the basic part of the state assignment of the Ministry of Education and Science of the Russian Federation under project No. FZWR-2024-0003 (No. 075-00150-24-03) “Development of a technological strategy and theoretical and experimental study of the key elements of the technology of additive synthesis of metal wire parts using the 3DMP method and wave thermo-deformation strengthening of synthesized machine parts”.

