Optimal milling parameters of 0.12 C-18 Cr-10Ni-Ti stainless steel fabricated by electron beam additive manufacturing

Cover Page

Cite item

Abstract

Introduction. Unlike traditional manufacturing processes, additive manufacturing (AM) offers improved efficiency while being environmentally friendly. A significant limitation hindering the adoption of wire-based electron beam additive manufacturing (EBAM) technology is the relatively low quality and high surface roughness of 3D-printed parts. The purpose of this study is to establish the optimal values of milling process parameters (rotational speed, feed rate, and milling width) based on the simultaneous evaluation of the surface roughness of the machined surface and the material removal rate. Methods and materials. This study investigated specimens fabricated using EBAM technology. Uniaxial tensile tests were conducted on an electromechanical testing machine. Cutting forces were determined with a Kistler 9257B dynamometer. Milling studies of EBAM 321 steel workpieces were performed on a semi-industrial CNC milling machine. Results and discussion. It was shown that in order to increase the material removal rate and reduce the cutting force on a milling machine without the use of coolant, it is recommended to increase the milling speed, but not to increase the feed rate. To investigate the relationship between material removal rate and surface roughness relative to milling parameters on a semi-industrial machine (with an average stiffness of the portal frame), multiple linear regression models and nonlinear models based on feedforward neural networks were employed. It was demonstrated that linear regression models are sufficient for predicting optimal milling parameters. However, it should be noted that the study was conducted within a narrow range of gentle machining conditions, with short processing times and without accounting for tool wear. Under these constraints, the optimal milling parameters for EBAM 321 steel were predicted as follows: spindle speed of 4,500 rpm, feed rate S = 404 mm/min, and cutting depth B = 0.43 mm, resulting in a predicted surface roughness (Ra) of 0.648 µm and a material removal rate of 695 mm³/min.

About the authors

Mengxu Qi

National Research Tomsk Polytechnic University

Email: mensyuy1@tpu.ru
ORCID iD: 0000-0003-3738-0193
SPIN-code: 1437-7723
Scopus Author ID: 58000788300
ResearcherId: KRV-7414-2024

Post-graduate Student

Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin Avenue

Sergey V. Panin

Institute of Strength Physics and Materials Sciences SB RAS

Email: svp@ispms.ru
ORCID iD: 0000-0001-7623-7360
SPIN-code: 2348-2651
Scopus Author ID: 7003422815
ResearcherId: H-2160-2016
https://www.ispms.ru/persons/panin-sergey-viktorovich.php

D.Sc. (Engineering), Professor

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Dmitry Yu. Stepanov

Institute of Strength Physics and Materials Sciences SB RAS

Email: sdu@ispms.ru
ORCID iD: 0000-0003-2558-7613
SPIN-code: 7166-3580
Scopus Author ID: 57205610120
ResearcherId: MEO-3821-2025

Ph.D. (Engineering)

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Mikhail V. Burkov

Institute of Strength Physics and Materials Sciences SB RAS

Email: sdu@ispms.ru
ORCID iD: 0000-0002-3337-6579
SPIN-code: 7852-3768
ResearcherId: F-5495-2014

Ph.D. (Engineering)

Russian Federation, 634055, Russian Federation, Tomsk, 2/4 per. Academicheskii

Qingrong Zhang

National Research Tomsk Polytechnic University

Author for correspondence.
Email: cinzhun1@tpu.ru
ORCID iD: 0009-0002-7820-1227
SPIN-code: 7543-1914
ResearcherId: MZQ-6626-2025

Post-graduate Student

Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin Avenue

References

  1. Lippold J.C., Kotecki D.J. Welding metallurgy and weldability of stainless steels. – Hoboken: John Wiley & Sons, 2005. – 357 p. – ISBN 978-0-471-47379-4.
  2. Research progress on the relationship between microstructure and properties of AISI 321 stainless steel / Z. Huang, J. Zhang, Z. Ma, S. Yuan, H. Yang // Applied Sciences. – 2024. – Vol. 14 (22). – P. 10196. – doi: 10.3390/app142210196.
  3. Transformation law of microstructure evolution and mechanical properties of electron beam freeform fabricated 321 austenitic stainless steel / Q. Yin, G. Chen, H. Cao, G. Zhang, B. Zhang, S. Wei // Vacuum. – 2021. – Vol. 194. – P. 110594. – doi: 10.1016/j.vacuum.2021.110594.
  4. Layer thickness dependence of performance in high-power selective laser melting of 1Cr18Ni9Ti stainless steel / M. Ma, Z. Wang, M. Gao, X. Zeng // Journal of Materials Processing Technology. – 2014. – Vol. 215. – P. 142–150. – doi: 10.1016/j.jmatprotec.2014.07.034.
  5. Correlation between heat treatment process parameters, phase composition, texture, and mechanical properties of 12H18N10T stainless steel processed by selective laser melting / A.L. Kameneva, A.A. Minkova, N.N. Cherkashneva, V.V. Karmanov // IOP Conference Series: Materials Science and Engineering. – 2018. – Vol. 447 (1). – P. 012043. – doi: 10.1088/1757-899X/447/1/012043.
  6. Microstructure and corrosion properties of wire arc additively manufactured multi-trace and multilayer stainless steel 321 / X. Wang, Q. Hu, W. Liu, W. Yuan, X. Shen, F. Gao, D. Tang, Z. Hu // Metals. – 2022. – Vol. 12. – P. 1039. – doi: 10.3390/met12061039.
  7. Laser additive manufacturing of Inconel 718 at increased deposition rates / C. Zhong, A. Gasser, G. Backes, J. Fu, J.H. Schleifenbaum // Materials Science and Engineering: A. – 2022. – Vol. 844. – P. 143196. – doi: 10.1016/j.msea.2022.143196.
  8. Sciaky Inc. Benefits of Wire vs. Powder Metal 3D Printing. Comparing Sciaky’;s wirefeed 3D printing process, a.k.a. Electron Beam Additive Manufacturing, to powder-based feedstock 3D printing processes. 2008. – URL: https://www.sciaky.com/additive-manufacturing/wire-vs-powder (accessed: 30.10.2025).
  9. Coaxial laser metal wire deposition of Ti6Al4V alloy: process, microstructure and mechanical properties / Y. Chen, X. Chen, M. Jiang, Z. Lei, Z. Wang, J. Liang, S. Wu, S. Ma, N. Jiang, Y. Chen // Journal of Materials Research and Technology. – 2022. – Vol. 20. – P. 2578–2590. – doi: 10.1016/j.jmrt.2022.08.068.
  10. Wire + arc additive manufacture of 17-4 PH stainless steel: Effect of different processing conditions on microstructure, hardness, and tensile strength / A. Caballero, J. Ding, S. Ganguly, S. Williams // Journal of Materials Processing Technology. – 2019. – Vol. 268. – P. 54–62. – doi: 10.1016/j.jmatprotec.2019.01.007.
  11. Weglowski M.S., Blacha S., Phillips A. Electron beam welding – Techniques and trends – Review // Vacuum. – 2016. – Vol. 130. – P. 72–92. – doi: 10.1016/j.vacuum.2016.05.004.
  12. Wang D., Liu Z., Liu W. Experimental measurement of vacuum evaporation of aluminum in Ti-Al, V-Al, Ti6Al4V alloys by electron beam // Metals. – 2021. – Vol. 11 (11). – P. 1688. – doi: 10.3390/met11111688.
  13. Microstructural evolution in a thin wall of 2Cr13 martensitic stainless steel during wire arc additive manufacturing / Z. Lyu, Y.S. Sato, S. Tokita, Y. Zhao, J. Jia, A. Wu // Materials Characterization. – 2021. – Vol. 182. – P. 111520. – doi: 10.1016/j.matchar.2021.111520.
  14. Production of workpieces from martensitic stainless steel using electron-beam surfacing and investigation of cutting forces when milling workpieces / N.V. Martyushev, V.N. Kozlov, M. Qi, V.S. Tynchenko, R.V. Kononenko, V.Yu. Konyukhov, D.V. Valuev // Materials. – 2023. – Vol. 16. – P. 4529. – doi: 10.3390/ma16134529.
  15. Direct laser fabrication of three dimensional components using SC420 stainless steel / G.A. Ravi, X.J. Hao, N. Wain, X. Wu, M.M. Attallah // Materials & Design. – 2013. – Vol. 47. – P. 731–736. – doi: 10.1016/j.matdes.2012.12.062.
  16. Grzesik W. Hybrid additive and subtractive manufacturing processes and systems: A review // Journal of Machine Engineering. – 2018. – Vol. 18. – P. 5–24. – doi: 10.5604/01.3001.0012.7629.
  17. Influence of anisotropy properties and structural inhomogeneity on elasticity and fracture of titanium alloys produced by electron-beam melting / V.A. Klimenov, E.A. Kolubaev, Z. Han, A.V. Chumaevskii, A.A. Klopotov, A.M. Ustinov, Z.G. Kovalevskaya, E. Moskvichev, M. Pan // The International Journal of Advanced Manufacturing Technology. – 2024. – Vol. 135. – P. 5575–5594. – doi: 10.1007/s00170-024-14843-7.
  18. Park S.H. Robust design and analysis for quality engineering. – London: Chapman & Hall, 1996. – 256 p.
  19. Phadke M.S. Quality engineering using robust design. – Englewood Cliffs, NJ: Prentice-Hall, 1989. – 320 p.
  20. Nalbant M., Gökkaya H., Sur G. Application of Taguchi method in the optimization of cutting parameters for surface roughness in turning // Materials & Design. – 2007. – Vol. 28 (4). – P. 1379–1385. – doi: 10.1016/j.matdes.2006.01.008.
  21. Comprehensive analysis of microstructure and mechanical, operational, and technological properties of AISI 321 austenitic stainless steel at electron beam freeform fabrication / S.V. Panin, M. Qi, D.Yu. Stepanov, M.V. Burkov, V.E. Rubtsov, Y.V. Kushnarev, I.Yu. Litovchenko // Construction Materials. – 2025. – Vol. 5 (3). – P. 62. – doi: 10.3390/constrmater5030062.
  22. Zhang J.Z., Chen J.C., Kirby E.D. Surface roughness optimization in an end-milling operation using the Taguchi design method // Journal of Materials Processing Technology. – 2007. – Vol. 184 (1–3). – P. 233–239. – doi: 10.1016/j.jmatprotec.2006.11.029.
  23. Application of neural network models with ultra-small samples to optimize the ultrasonic consolidation parameters for ‘PEI Adherend/Prepreg (CF-PEI Fabric)/PEI Adherend’; lap joints / D.Y. Stepanov, D. Tian, V.O. Alexenko, S.V. Panin, D.G. Buslovich // Polymers. – 2024. – Vol. 16. – P. 451. – doi: 10.3390/polym16040451.
  24. Draper N.R., Harry S. Applied regression analysis. – 3rd ed. – Wiley-Interscience, 1998. – 736 p. – ISBN 0471170828. – ISBN 9780471170822.
  25. Куприенко Н.В., Пономарева О.А., Тихонов Д.В. Статистические методы изучения связей: Корреляционно-регрессионный анализ: учебное пособие. – СПб.: Изд-во Политехн. ун-та, 2009. – 118 с.
  26. Yan X., Su X. Linear regression analysis: Theory and computing. – Singapore: World Scientific Publishing, 2009. – 328 p. – ISBN 9812834109. – ISBN 9789812834102.
  27. Haykin S.S. Neural networks and learning machines. – 3rd ed. – Upper Saddle River, NJ: Pearson Education, 2009. – ISBN 978-0131471399.
  28. Swingler K. Applying neural networks: A practical guide. – San Francisco, CA: Morgan Kaufman Publishers, 1996. – 303 p. – ISBN 0126791708. – ISBN 9780126791709.
  29. Holkar H., Sadaiah M. Optimization of end milling machining parameters of AISI 321stainless steel using Taguchi method // International Journal on Recent and Innovation Trends in Computing and Communication. – 2016. – Vol. 4. – P. 20–23.
  30. Study of the machinability of an Inconel 625 composite with added NiTi-TiB2 fabricated by direct laser deposition / A. Arlyapov, S. Volkov, V. Promakhov, A. Matveev, A. Babaev, A. Vorozhtsov, A. Zhukov // Metals. – 2022. – Vol. 12 (11). – P. 1956. – doi: 10.3390/met12111956.

Supplementary files

Supplementary Files
Action
1. JATS XML

Note

Funding

The study was financially supported by the Russian Federation via Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075-15-2023-456).

 

Acknowledgements

Research were conducted at core facility "Structure, mechanical and physical properties of materials" NSTU. The authors thank Yu.V. Kushnarev for assistance in fabricating 0.12C-18Cr-10Ni-Ti steel samples at the experimental facility of ISPMS SB RAS.



Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».