Milling of a blank from austenitic stainless steel AISI 321, deposited using wire-arc additive manufacturing (WAAM)
- Authors: Zhang Q.1, Klimenov V.A.1, Kozlov V.N.1, Chinakhov D.A.2, Han Z.1, Qi M.1, Ding Z.1, Pan M.1
-
Affiliations:
- National Research Tomsk Polytechnic University
- Novosibirsk State Technical University
- Issue: Vol 27, No 4 (2025)
- Pages: 62-79
- Section: TECHNOLOGY
- URL: https://journals.rcsi.science/1994-6309/article/view/356663
- DOI: https://doi.org/10.17212/1994-6309-2025-27.4-62-79
- ID: 356663
Cite item
Abstract
Introduction. Wire arc additive manufacturing (WAAM), due to its “design as manufacturing” characteristic, is gradually becoming one of the most promising technologies. However, at present, there are no comprehensive comparative studies on the microstructure and mechanical properties of deposited samples made from austenitic stainless steel at different locations of the sample. In addition, their machinability remains insufficiently investigated. The purpose of this study is to compare the microstructure and mechanical properties of samples made of austenitic stainless steel ER321 (analogues – AISI 321, 0.08% C-18% Cr-10% Ni-Ti) obtained by the WAAM method at different locations within the sample and to assess their machinability by the magnitude of the components of the cutting force during end milling and the roughness of the machined surface. The properties and microstructure of samples obtained by wire-arc additive technology are investigated, and milling forces are investigated. The effect of the feed on the components of the cutting force and the roughness of the machined surfaces during conventional milling of ER321 steel workpieces using 12 mm diameter cemented carbide end mills with a wear-resistant AlTiN coating applied by physical vapor deposition (PVD) is determined. Research methods. The content of elements and the solidification pattern in various parts of the workpieces were determined using X-ray microanalysis. The microstructure of the samples was studied by a metallographic method. Stress-strain diagrams were obtained by tensile tests, and the microhardness of the samples was also measured. In comparison with the pattern of conventional milling of rolled workpieces, a pattern of changes in cutting forces and surface roughness was established depending on the feed rate during milling of deposited workpieces. Results and discussion. During deposition, ferrite with a vermicular morphology is primarily formed in the lower region of the sample, whereas austenite with a dendritic ferrite structure is observed in other regions. The microhardness values of the deposited and rolled samples are close, averaging around 230 HV0.1. The ultimate tensile strength of the rolled samples is 666 MPa, which is approximately 40 MPa higher than that of the deposited samples. During milling of the deposited workpieces, the lateral cutting force acting perpendicular to the feed direction is greater, and the surface quality is poorer. During milling of deposited workpieces, the lateral cutting force acting perpendicular to the feed direction is greater, and the surface quality is poorer. During milling of deposited workpieces, the feed force acting in the feed direction is greater under high feed rates.
About the authors
Qingrong Zhang
National Research Tomsk Polytechnic University
Email: cinzhun1@tpu.ru
ORCID iD: 0009-0002-7820-1227
SPIN-code: 7543-1914
ResearcherId: MZQ-6626-2025
Post-graduate Student
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueVasiliy A. Klimenov
National Research Tomsk Polytechnic University
Author for correspondence.
Email: klimenov@tpu.ru
ORCID iD: 0000-0001-7583-0170
SPIN-code: 9036-3306
Scopus Author ID: 6602818041
ResearcherId: L-6178-2016
https://staff.tpu.ru/personal/employee?lid=58243
D.Sc. (Engineering), Professor
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueV. N. Kozlov
National Research Tomsk Polytechnic University
Email: kozlov-viktor@bk.ru
ORCID iD: 0000-0001-9351-5713
SPIN-code: 8273-1440
Scopus Author ID: 57117126400
ResearcherId: AAH-4717-2019
https://staff.tpu.ru/personal/employee?lid=58330
Ph.D. (Engineering), Associate Professor
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueDmitry A. Chinakhov
Novosibirsk State Technical University
Email: chinakhov@corp.nstu.ru
ORCID iD: 0000-0002-4319-7945
SPIN-code: 3449-9185
Scopus Author ID: 6508235280
ResearcherId: AAG-6844-2021
https://ciu.nstu.ru/kaf/persons/96587
D.Sc. (Engineering), Associate Professor
Russian Federation, 630073, Russian Federation, Novosibirsk, 20 Prospekt K. MarksaZeli Han
National Research Tomsk Polytechnic University
Email: hanzelizy@gmail.com
ORCID iD: 0000-0001-6502-6541
SPIN-code: 3444-2695
Scopus Author ID: 58310050000
ResearcherId: AGU-5699-2022
Post-graduate Student
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueMengxu Qi
National Research Tomsk Polytechnic University
Email: mensyuy1@tpu.ru
ORCID iD: 0000-0003-3738-0193
SPIN-code: 1437-7723
Scopus Author ID: 58000788300
ResearcherId: KRV-7414-2024
Post-graduate Student
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueZeru Ding
National Research Tomsk Polytechnic University
Email: czezhu1@tpu.ru
ORCID iD: 0009-0009-6303-7453
SPIN-code: 1210-3746
ResearcherId: LFS-2489-2024
Post-graduate Student
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueMenghua Pan
National Research Tomsk Polytechnic University
Email: menhua1@tpu.ru
ORCID iD: 0009-0004-1128-9935
SPIN-code: 7570-5817
ResearcherId: JQV-6745-2023
Post-graduate Student
Russian Federation, 634050, Russian Federation, Tomsk, 30 Lenin AvenueReferences
- Ahuja B., Karg M., Schmidt M. Additive manufacturing in production: Challenges and opportunities // Proceedings of SPIE. – 2015. – Vol. 9353. – P. 11–20. – doi: 10.1117/12.2082521.
- Altaf K., Abdul-Rani A.M., Raghavan V. Prototype production and experimental analysis for circular and profiled conformal cooling channels in aluminium filled epoxy injection mould tools // Rapid Prototyping Journal. – 2013. – Vol. 19 (4). – P. 220–229. – doi: 10.1108/13552541311323236.
- Rozvany G.I. A critical review of established methods of structural topology optimization // Structural and Multidisciplinary Optimization. – 2009. – Vol. 37 (2). – P. 217–237. – doi: 10.1007/s00158-007-0217-0.
- Sobczak J.J., Drenchev L. Metallic functionally graded materials: A specific class of advanced composites // Journal of Materials Science and Technology. – 2013. – Vol. 29 (4). – P. 297–316. – doi: 10.1016/j.jmst.2013.02.006.
- Модуль упругости и твердость титанового сплава, сформировавшегося в условиях электронного лучевого сплавления при ЭБ-печати проволокой / В.A. Клименов, Е.A. Колубаев, Ц. Хань, А.В. Чумаевский, Э.С. Двилис, И.Л. Стрелкова, Е.А. Дробяз, О.Б. Яременко, А.Е. Куранов // Обработка металлов: технология, оборудование, инструменты. – 2023. – Т. 25, № 4. – С. 180–201. – doi: 10.17212/1994-6309-2023-25.4-180-201.
- Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing / J. Chen, H. Wei, X. Zhang, Y. Peng, J. Kong, K. Wang // Materials & Design. – 2021. – Vol. 198. – P. 109325. – doi: 10.1016/j.matdes.2020.109325.
- Microstructure evolution and mechanical properties of a wire-arc additive manufactured austenitic stainless steel: Effect of processing parameter / P. Long, D. Wen, J. Min, Z. Zheng, J. Li, Y. Liu // Materials. – 2021. – Vol. 14 (7). – P. 1681. – doi: 10.3390/ma14071681.
- Microstructure, mechanical properties and fracture toughness of SS 321 stainless steel manufactured using wire arc additive manufacturing / K.S. Prakash, A.R. Kannan, R. Pramod, N.P. Kumar, N.S. Shanmugam // Transactions of the Indian Institute of Metals. – 2023. – Vol. 76 (2). – P. 537–544. – doi: 10.1007/s12666-022-02713-3.
- Chinakhov D.A., Akimov K.O. Formation of the structure and properties of deposited multilayer specimens from austenitic steel under various heat removal conditions // Metals. – 2022. – Vol. 12 (9). – P. 1527. – doi: 10.3390/met12091527.
- Microstructure and grain growth inhomogeneity in austenitic steel produced by wire-feed electron beam melting: the effect of post-building solid-solution treatment / E.G. Astafurova, M.Y. Panchenko, V.A. Moskvina, G.G. Maier, S.V. Astafurov, E.V. Melnikov // Journal of Materials Science. – 2020. – Vol. 55 (3). – P. 9211–9224. – doi: 10.1007/s10853-020-04424-w.
- Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels / F. Khodabakhshi, M.H. Farshidianfar, A.P. Gerlich, M. Nosko, V. Trembošová, A. Khajepour // Additive Manufacturing. – 2020. – Vol. 31. – P. 100915. – doi: 10.1016/j.addma.2019.100915.
- Design for additive manufacturing: Trends, opportunities, considerations, and constraints / M.K. Thompson, G. Moroni, T. Vaneker, G. Fadel, R.I. Campbell, I. Gibson // CIRP Annals – Manufacturing Technology. – 2016. – Vol. 65 (2). – P. 737–760. – doi: 10.1016/j.cirp.2016.05.004.
- Исследование сил резания и обрабатываемости при фрезеровании порошковой коррозионно-стойкой стали, полученной по технологии прямого лазерного выращивания (LMD) / А.С. Бабаев, В.Н. Козлов, А.Р. Семенов, А.С. Шевчук, В.А. Овчаренко, Е.А. Сударев // Обработка металлов (технология, оборудование, инструменты). – 2024. – Т. 26, № 2. – С. 38–56. – doi: 10.17212/1994-6309-2024-26.2-38-56.
- Investigations on the effect of layers’; thickness and orientations in the machining of additively manufactured stainless steel 316L / A. Dabwan, S. Anwar, A.M. Al-Samhan, A. AlFaify, M.M. Nasr // Materials. – 2021. – Vol. 14 (7). – P. 1797. – doi: 10.3390/ma14071797.
- Study on microstructure, mechanical properties and machinability of efficiently additive manufactured AISI 316L stainless steel by high-power direct laser deposition / P. Guo, B. Zou, C. Huang, H. Gao // Journal of Materials Processing Technology. – 2017. – Vol. 240. – P. 12–22. – doi: 10.1016/j.jmatprotec.2016.09.005.
- Thermal study during milling of Ti6Al4V produced by Electron Beam Melting (EBM) process / S. Milton, A. Duchosal, F. Chalon, R. Leroy, A. Morandeau // Journal of Manufacturing Processes. – 2019. – Vol. 38. – P. 256–265. – doi: 10.1016/j.jmapro.2018.12.027.
- Anisotropy and heterogeneity of microstructure and mechanical properties in metal additive manufacturing: A critical review / Y. Kok, X.P. Tan, P. Wang, M.L.S. Nai, N.H. Loh, E. Liu, S.B. Tor // Materials & Design. – 2018. – Vol. 139. – P. 565–586. – doi: 10.1016/j.matdes.2017.11.021.
- Марочник стали и сплавов: сайт. – 2003–2025. – URL: https://www.splav-kharkov.com (дата обращения: 17.10.2025).
- Flow behavior and microstructure evolution during dynamic deformation of 316L stainless steel fabricated by wire and arc additive manufacturing / J. Chen, H. Wei, X. Zhang, Y. Peng, J. Kong, K. Wang // Materials & Design. – 2021. – Vol. 198. – P. 109325. – doi: 10.1016/j.matdes.2020.109325.
- Astafurov S., Astafurova E. Phase composition of austenitic stainless steels in additive manufacturing: A review // Metals. – 2021. – Vol. 11 (7). – P. 1052. – doi: 10.3390/met11071052.
- Steels in additive manufacturing: A review of their microstructure and properties / P. Bajaj, A. Hariharan, A. Kini, P. Kürnsteiner, D. Raabe, E.A. Jägle // Materials Science and Engineering: A. – 2020. – Vol. 772. – P. 138633. – doi: 10.1016/j.msea.2019.138633.
- Elmer J.W., Allen S.M., Eagar T.W. Microstructural development during solidification of stainless steel alloys // Metallurgical Transactions A. – 1989. – Vol. 20 (8). – P. 2117–2131. – doi: 10.1007/BF02650298.
- Thermal behavior and microstructural evolution during laser deposition with laser-engineered net shaping: Part I. Numerical calculations / B. Zheng, Y. Zhou, J.E. Smugeresky, J.M. Schoenung, E.J. Lavernia // Metallurgical and Materials Transactions A. – 2008. – Vol. 39 (10). – P. 2228–2236. – doi: 10.1007/s11661-008-9557-7.
- Production of workpieces from martensitic stainless steel using electron-beam surfacing and investigation of cutting forces when milling workpieces / N.V. Martyushev, V.N. Kozlov, M. Qi, V.S. Tynchenko, R.V. Kononenko, V.Y. Konyukhov, D.V. Valuev // Materials. – 2023. – Vol. 16 (13). – P. 4529. – doi: 10.3390/ma16134529.
- Расчет напряжений в режущем инструменте в начале резания / Ц. Чжан, Л. Шэ, Т. Го, В.Н. Козлов // Научная инициатива иностранных студентов и аспирантов: сборник докладов III Международной научно-практической конференции. – Томск, 2023. – C. 450–456.
- Study of a methodology for calculating contact stresses during blade processing of structural steel / V.N. Kozlov, A.S. Babaev, N.A. Shults, A.S. Semenov, A.S. Shevchuk // Metals. – 2023. – Vol. 13 (12). – P. 2009. – doi: 10.3390/met13122009.
- Heat transfer modelling and stability analysis of selective laser melting / A.V. Gusarov, I. Yadroitsev, P. Bertrand, I. Smurov // Applied Surface Science. – 2007. – Vol. 254 (4). – P. 975–979. – doi: 10.1016/j.apsusc.2007.08.074.
- Das C.R., Ghosh A. Performance of carbide end mills coated with new generation nano-composite TiAlSiN in machining of austenitic stainless steel under near-dry (MQL) and flood cooling conditions // Journal of Manufacturing Processes. – 2023. – Vol. 104. – P. 418–442. – doi: 10.1016/j.jmapro.2023.09.020.
Supplementary files
Note
The equipment used for the research was provided by the Shared Use Center “Structure, Mechanical and Physical Properties of Materials” at Novosibirsk State Technical University.

