Structural-phase state and cyclic life of high-chromium steel 40Kh13 processed by intense flows of nitrogen ions

Cover Page

Cite item

Full Text

Abstract

The effect of ion-beam nitriding at temperature 670 and 770 K on the structure, phase composition and cyclic durability (fatigue resistance) of high-chromium martensitic steel 40Kh13 is considered. It is shown that the nitrided layer on the steel treated at 670 K contains particles of nitride phases such as e-(Fe, Cr) 2-3N, g¢-(Fe, Cr) 4N, a²- (Fe, Cr) 8N and the solid solution of nitrogen in martensite. Treatment of the 40Kh13 steel at 770 K leads to formation of the nitrided layer containing CrN nitride particles. The occurrence of compressive stresses the nitrided layers is registered. The highest compressive stresses of 780 MPa are located in the steel 40Kh13 surface layer treated with nitrogen ions at 670 K. It was found that the steel processing by intensive flows of nitrogen ions effectively increases its’ micro-hardness and resistance to fatigue failure in the field of high-cycle fatigue. The most efficient increase in the number of cycles to failure is recorded after the nitrogen ion beam processing of the steel at 670 K. The fatigue resistance of the steel treated at 670 K increases up to 850 MPa. It is concluded that the cycle life is greatly influenced by the level of compressive stresses in the surface layers. The highest levels of compressive stress and cyclic durability is achieved by ion processing of the steel at 670 K, which provides both the formation of nitrides and a high concentration of dissolved nitrogen in the matrix phase.

About the authors

V. A Kukareko

The State Scientific Institution “Joint Institute of Mechanical Engineering of the National Academy of Sciences of Belarus”, Centre of Structural Research and Tribo-Mechanical Test of Materials

Email: v_kukareko@mail.ru
12, Akademicheskaya str., Minsk, 220072, Republic of Belarus

References

  1. Klesnil M., Lukas P. Fatigue of metallic materials. - 2nd rev. ed. - Amsterdam: Elsevier, 1992. - 270 p. - (Materials science monographs; vol. 71). - ISBN-10: 0444987231. - ISBN-13: 978-0-444-98723-5.
  2. Финкель В.М. Физические основы торможения разрушения. - М.: Металлургия, 1977. - 360 с.
  3. Davidson D.L., Lankford J. Fatigue crack growth in metals and alloys: mechanisms and micromechanics // International Materials Reviews. - 1992. - Vol. 37, iss. 1. - P. 45-76. - doi: http://dx.doi.org/10.1179/imr.1992.37.1.45.
  4. Белый А.В., Кукареко В.А., Патеюк А. Инженерия поверхностей конструкционных материалов концентрированными потоками ионов азота. - Минск: Белорусская наука, 2007. - 244 с. - ISBN 978-985-08-0793-9.
  5. Microstructure of ultrahigh dose nitrogen - implanted iron and stainless steel / D.L. Williamson, O. Ozturk, S. Glick, R. Wei, and P.J. Wilbur // Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. - 1991. - Vol. 59-60, pt. 2. - P. 737-741. - doi: 10.1016/0168-583X(91)95693-8.
  6. A comparative study of beam ion implantation, plasma ion implantation and nitriding of AISI 304 stainless steel / R. Wei, J.J. Vajo, J.N. Mattosian, P.J. Wilbur, J.A. Davis, D.L. Williamson, G.A. Collins // Surface and Coatings Technology. - 1996. - Vol. 83, iss. 1-3. - P. 235-242. - doi: 10.1016/0257-8972(95)02825-0.
  7. Kukareko V.A., Byeli A.V. Dose rate and microstructure of nitrogen ion-implanted chromium steels // Surface and Coatings Technology. - 2000. - Vol. 127, iss. 2-3. - P. 174-178. - doi: 10.1016/S0257-8972(99)00654-4.
  8. Solid-state amorphization of a tool steel by high-current-density, low-energy nitrogen ion implantation / A.V. Byeli, V.A. Kukareko, O.V. Lobodaeva, S.K. Shykh // Nuclear Instruments and Methods in Physics Research. Section B: Beam Interactions with Materials and Atoms. - 1995. - Vol. 103, iss. 4. - P. 533-536. - doi: 10.1016/0168-583X(95)01188-9.
  9. Конструкционные материалы: справочник / Б.Н. Арзамасов и др.; под общ. ред. Б.Н. Арзамасова. - М.: Машиностроение, 1990. - 688 с. - (Основы проектирования машин).
  10. Белый А.В. Высокоинтенсивная низкоэнергетическая имплантация ионов азота // Физическая мезомеханика. - 2002. - Т. 5, № 1. - С. 95.
  11. Комяк Н.И., Мясников Ю.Г. Рентгеновские методы и аппаратура для определения напряжений. - Л.: Машиностроение, 1972. - 88 с.
  12. Jack K.H. The occurrence and crystal structure of a″-iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite // Proceedings of the Royal Society of London. Series A. - 1951. - Vol. 208, iss. 1093. - Р. 216-224. - doi: 10.1098/rspa.1951.0155.
  13. Панин В.Е. Поверхностные слои нагруженных твердых тел как мезоскопический структурный уровень деформации // Физическая мезомеханика. - 2001. - Т. 4, № 3. - С. 5-22.
  14. Wilkinson A.J., Roberts S.G., Hirsch P.B. Modelling the threshold conditions for propagation of stage I fatigue cracks // Acta Materialia. - 1998. - Vol. 46, iss. 2. - P. 379-390. - doi: 10.1016/S1359-6454(97)00290-5.
  15. Белый А.В., Кукареко В.А., Биленко Э.Г. Сопротивление контактному и усталостному разрушению хромистых сталей, поверхностно легированных ионами азота // Весцi Нацыянальнай Акадэмii навук Беларусi. Серыя фiзiка-тэхнiчных навук. - 2005. - № 1. - С. 5-9.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).