Optimal choice of the technology of thick steel sheets laser cutting

Cover Page

Cite item

Full Text

Abstract

Laser cutting of steel when oxygen is used as a process gas can be done by two methods. The first one is the laser-oxygen cutting, which presents the forced combustion of iron in oxygen. In this case, the laser radiation and exothermic reaction of oxidation make roughly equal contribution in the energy balance. The second method is the oxy-laser cutting when the laser beam just initiates the combustion reaction, which provides almost all energy needed for the cutting. This method is used for thick sheets. As of today, there are no scientifically proven criteria of the choice of the cutting method for a certain sheet thickness providing the qualitative cut with the low roughness. Above all it results from the insufficient information about the mechanisms of the cut surface shape formation. Available theoretical models of the laser cutting cannot be a reliable tool to choose the optimal cutting method regarding the sheet thickness. In this paper, the problem is solved experimentally. Generalization of a large body of experimental data enables to have the empirical dependence of the optimal cutting speed Vq, at which the roughness is minimal, on the cut sheet thickness: QUOTE . The criterion is proposed, the maximal sheet thickness tm is found; above it, the high-quality laser-oxygen cutting is impossible. The value tm is found from the condition Vq = Vc, where the critical speed Vc, at which the uncontrolled side burning begins, the cutting roughness increases, and the high-quality cutting is impossible. The measured value Vc is equal to 0.4…0.5 m/min, which correlates to tm = 40…50 mm. The oxygen-assisted laser cutting of low-carbon and low-alloyed steels is advisable starting from the thickness of 30…40 mm. The tests of the laser-oxygen cutting of sheets of 18…50 mm showed that at the thickness of 30 and 40 mm, the oxygen-assisted laser cutting provides the cut quality not worse than the laser-oxygen cutting if the process parameters are optimal.

About the authors

A. A Golyshev

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: alexgol@itam.nsc.ru
4/1, Institutskaya str., Novosibirsk, 630090, Russian Federation

A. M Orishich

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: orishich@itam.nsc.ru
4/1, Institutskaya str., Novosibirsk, 630090, Russian Federation

V. B Shulyatyev

Khristianovich Institute of Theoretical and Applied Mechanics SB RAS

Email: shulyat@rambler.ru
4/1, Institutskaya str., Novosibirsk, 630090, Russian Federation

References

  1. LIA handbook of laser materials processing / eds.: J.F. Ready, D.F. Farson, T. Feeley. - 1st ed. - Berlin; Heidelberg: Springer-Verlag, 2001. - 715 p. - ISBN 978-3-540-41770-5.
  2. Steen W.M., Mazumder J. Laser material processing. - 4th ed. - London: Springer-Verlag, 2010. - 558 p. - ISBN 978-1-84996-061-8. - doi: 10.1007/978-1-84996-062-5.
  3. Взаимодействие лазерного излучения с металлами / А.М. Прохоров, В.И. Конов, И. Урсу, И.Н. Михайлеску. - М.: Наука, 1988. - 538 с.
  4. Laser-oxygen cutting of mild steel: the thermodynamics of the oxidation reaction / J. Powell, D. Petring, R.V. Kumar, S.O. Al-Mashikhi, A.F.H. Kaplan, K.T. Voisey // Journal of Physics D: Applied Physics. - 2009. - Vol. 42. - P. 015504. - doi: 10.1088/0022-3727/42/1/015504.
  5. The theory of laser material processing / ed.: J. Dowden. - Dordrecht: Springer, 2009. - 381 p. - ISBN-13 978-1-4020-9339-5. - doi: 10.1007/978-1-4020-9340-1.
  6. Rajpurohit S.R., Patel D.M. Striation mechanism in laser cutting - the review // International Journal of Engineering Research and Applications. - 2012. - Vol. 2, iss. 2. - P. 457-461.
  7. Diagnostics, modeling and simulation: three keys towards mastering the cutting process with fiber, disk and diode lasers / D. Petring, T. Molitor, F. Schneider, N. Wolf // Physics Procedia. - 2012. - Vol. 39. - P. 186-196. - doi: 10.1016/j.phpro.2012.10.029.
  8. Fundamental study of CO2- and fiber laser cutting of steel plates with high speed visualization technique / G.V. Ermolaev, P.V. Yudin, F. Briand, A.V. Zaitsev, O.B. Kovalev // Journal of Laser Applications. - 2014. - Vol. 26. - P. 042004. - doi: 10.2351/1.4895563.
  9. High-quality beam generation in a 8 kW cw СО2 laser / Yu.V. Afonin, A.P. Golyshev, A.I. Ivanchenko, A.N. Malov, A.M. Orishich, V.A. Pechurin, V.F. Filev, V.B. Shulyat’ev // Quantum Electronics. - 2004. - Vol. 34, N 4. - P. 307-309. - doi: 10.1070/QE2004v034n04ABEH002671.
  10. Experimental study of laser-oxygen cutting of low-carbon steel using fibre and CO2 lasers under conditions of minimal roughness / A.A. Golyshev, A.G. Malikov, A.M. Orishich, V.B. Shulyatyev // Quantum Electronics. - 2014. - Vol. 44, N 10. - P. 970-974. - doi: 10.1070/QE2014v044n10ABEH015412.
  11. O’Neill W., Gabzdyl J.T. New developments in laser-assisted oxygen cutting // Optics and Lasers in Engineering. - 2000. - Vol. 34, iss. 4-6. - P. 355-367. - doi: 10.1016/S0143-8166(00)00070-1.
  12. Газодинамика лазерной резки толстых стальных пластин непрерывным СО2-лазером / А.В. Зайцев, О.Б. Ковалев, А.М. Оришич, В.М. Фомин, В.Б. Шулятьев // Вычислительные технологии. - 2006. - Т. 11, спец. вып., ч. 1. - С. 74-83.
  13. Gladush G.G., Smurov I. Physics of laser material processing. - Berlin: Springer-Verlag, 2011. - 534 p. - ISBN 978-3-642-19242-5. - doi: 10.1007/978-3-642-19831-1.
  14. Powell J. LIA guide to laser cutting. - 2nd ed. - Orlando: LIA Publ., 2008. - 104 p. - ISBN 978-0-912035-16-1.
  15. Голышев А.А. Стандартизации лазерно-кислородной резки по критерию шероховатости поверхности // Обработка металлов (технология, оборудование, инструменты). - 2016. - № 1 (70). - С. 16-21. - doi: 10.17212/1994-6309-2016-1-16-21.

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).